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Abstract

It is often hard to analyze the effect of a policy when the policy is staggered-adopted

by states, or the treatment effect is dynamic. Researchers usually make strong assump-

tions on the staggered adoption and the dynamic treatment effect to make evaluation

possible. One popular estimation method that is robust to dynamic treatment effect is

Callaway and Sant’Anna’s Difference-in-Difference (Callaway and Sant’Anna (2021)).

This paper identifies the limitations of CS-DID and proposes two new methods/al-

gorithms based on SCM, LASSO, and CS-DID (namely: SCM-CS-DID and LASCM-

CS-DID), that are robust to abnormal units in the treatment group and relax the

assumptions from CS-DID.

1 Introduction

Synthetic Control Method (SCM) by Abadie et al. (2010) a statistical technique used in the

field of causal inference and policy evaluation. It is designed to estimate the causal effect of a

treatment or intervention on an individual agent by comparing it to a weighted combination
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of control units that did not receive the treatment. Least Absolute Shrinkage and Selection

Operator (LASSO) by Tibshirani (1996) is a statistical technique used for linear regression

and feature selection. It adds a penalty term to the standard linear regression cost function,

which combines the sum of squared residuals with a penalty based on the absolute values of

the regression coefficients. SCM and LASSO are similar in construction, shown in Section

4, but they are seldom compared in context of policy evaluation.

Analyzing the effects of policies is often complex when they’re adopted at different times

or have evolving impacts. One popular estimation method that is robust to dynamic treat-

ment effect is Callaway and Sant’Anna’s Difference-in-Difference (Callaway and Sant’Anna

(2021)). We list the assumptions and main theorem of Callaway and Sant’Anna (2021) in

the Appendix. However, we argue that the assumptions in Callaway and Sant’Anna (2021)

could be uneasy to achieve in practice in Section 2. Motivated by this, we discuss and

compare SCM and LASSO in context of policy evaluation under staggered adoption with

dynamic treatment effect. We come up with two new algorithms that combine SCM with

CS-DID and LASSO with SCM with CS-DID (namely SCM-CS-DID and LASCM-CS-DID)

which are robust under staggered adoption with dynamic treatment effect. Properties of our

methods are supported by two Monte-Carlo simulations.

Additionally, this paper employs The 1984 National Minimum Drinking Age Act on Beer

Consumption as a case study and finds the effect of the policy is −2, 270, 766 gallons of beer

on average across all states. We recommend researchers to perform our proposed algorithms

at first to take advantage of the abnormality detection property.

This paper starts from discussing the Literature Review in Section 2. Section 3 contains

two simulation setups. Under the first simulation setup, we introduces SCM-CS-DID and

LASSO-CS-DID. We show the usual methods, including CS-DID, would produce a biased es-

timate under the DGP in Section 3, while SCM-CS-DID and LASSO-CS-DID would do well.

Under the second simulation setup, we demonstrate LASSO-CS-DID would be problematic,

and that motivate us to introduce LASCM-CS-DID. Section 4 summarizes important sta-
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tistical models. Section 5 compares SCM, LASSO, and a proxy estimation method LCR in

terms of predictability and interpretability. Section 6 applies the usual estimators, SCM-CS-

DID, and LASCM-CS-DID to estimate the effect of the 1984 National Minimum Drinking

Age Act on beer consumption. Section 7 synthesizes the limitations that arise in this paper.

Finally, the Appendix contains definitions, assumptions, and theorems from Callaway and

Sant’Anna (2021) and Goodman-Bacon (2021), Tables, and Figures.

2 Literature Review

2.1 Methodology

In policy evaluation, the staggered adoption and the dynamic treatment effect are prob-

lematic if researchers naively apply econometric tools without dealing with them properly.

Goodman-Bacon (2021) gives intuition that, under staggered adoption, the Two-Way-Fixed-

Effect Difference-in-Difference (TWFE-DID) estimator is biased, and the true estimator is

a variance-weighted average of all combinations of treatment windows (early vs late in the

early window, late vs untreated in the late window, untreated vs early in the early window,

untreated vs early in the late window, where the last comparison is the source of the bias).

We attached the major theorem in Goodman-Bacon (2021) in our Appendix. This intuition

can be extended to the Synthetic Control Method (SCM) and LASSO with staggered adop-

tion: We should not directly apply SCM or LASSO under staggered adoption framework.

It is quite surprising that there has been very few papers discussing SCM under staggered

adoption framework. Ben-Michael et al. (2021) attempts to use SCM on staggered adoption.

They use a pooled SCM method under a linear factor model and an AR(L) process. This is

the only literature I found that attempts to discover the potential of staggered SCM.

To gain intuition behind the staggered adoption and dynamic treatment effect framework,

we want to employ the Monte-Carlo Simulation and see how various estimators behave

under different simulation setups. Baker et al. (2022) uses two groups of three Monte Carlo
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simulations to show that the TWFE-DID is unbiased under Not Staggered + Constant τ , Not

Staggered + Dynamic τ , where the τ increases with time at a constant rate, and Staggered

+ Constant/Equal τ . They then show that the TWFE-DID is biased under Staggered +

Constant/Unequal τ , Staggered + Dynamic/Equal τ , and Staggered + Constant/Unequal

τ . This literature summarizes the common approaches to solve the bias in TWFE-DID:

Callaway and Sant’Anna (2021) Estimator (CS-DID), Sun and Abraham (2021) Estimator,

and Stacked Regression Estimators. All three estimators give an unbiased estimation of τ

under the later three simulations. Baker et al. (2022) inspire this paper to run simulations

similar to their setups in Section 3.

One crucial estimator that we employ (or combine with other estimators to form a new

algorithm in Section 3) is CS-DID. Callaway and Sant’Anna (2021) show that their CS-DID,

under Assumptions 1 to 6, can recover the τ under heterogeneous treatment effect over time.

However, some of their assumptions are relatively hard to observe in reality. Using their

notations, Assumption 2 requires

{Yi,1, Yi,2, . . . , Yi,T , Xi, Di,1, Di,2, . . . , Di,T }ni=1

to be i.i.d., which generally require strong experimental designs and might not be easily

achieved in policy evaluation programs. Also, assumptions 4 and 5 generalize the parallel

trend assumption to the conditional parallel trend assumptions with respect to different

groups (Never-treated group or not-yet-treated group). As mentioned in Remark 2 in Call-

away and Sant’Anna (2021): ”In some applications, practitioners may not be comfortable

with using ’never-treated’ units as part of the comparison group because they behave very

differently from the other ’eventually treated’ units.” I agree that ”treated or not” contains

important information itself, and I would suggest that it is reasonable to consider the or-

der/sequence of treatments in some applications (e.g. the agent with noticeable degree of

problem would be treated first). Therefore, generalization of assumptions 4 and 5 is needed
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if differences exist between the early-treated, late-treated, and never-treated groups. We will

generalize the conditional parallel trends assumptions from a different angle in Section 3,

and we propose our Assumptions 7 and 8 in the Appendix.

2.2 Useful Properties

We want to mention a specific property of SCM that plays crucial role in our paper.

Abadie (2021) provides practical guidance to researchers employing synthetic control meth-

ods. Abadie summarizes the advantages of SCM, including No Extrapolation and Trans-

parency of the Fit. In our proposed algorithms, the first property serves great importance.

3 Simulations

3.1 Setup 1

Analogous to the simulation setup in Baker et al. (2022), we generate 4 simulation frameworks

to investigate the performance of different estimation methods under different setups. The 4

simulation frameworks are generated by {NS, S}× {C,D}, where NS and S denote the ”Not

Staggered” and ”Staggered” status, i.e. there does not/does exist the staggered adoption,

and C and D denote the ”Constant” and ”Dynamic” treatment effect statuses, i.e. there

does not/does exist the dynamic treatment effect. In this section, dynamic treatment effect

contains variation in treatment effect only with respect to time, i.e. treatment effect only

varies with time but does not go across different units.

This paper will first gain insights by running 5, 000 Monte Carlo simulations by the

following setup: Assume we have N units and T periods under a balanced panel data setup.

The outcome variable for the i-th unit at time t is denoted by Yit, and it is generated based

on a non-stationary model as

Yit(Ti) = vt(Ti) + τkDit + uit
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where Ti ∈ {t1, t2,∞} is the treatment-group indicator and 0 ≤ t1 < t2 ≤ T , Dit
def
= 1t≥Ti

is the treatment dummy variable, and τk = 300 − 10k is the time-varying treatment effect

variable where the index k
def
= max{0, t−Ti} is the event-time variable, and uit ∼i.i.d. N(0, 1)

is the noise term. The vt(Ti) is defined as

vt(Ti) =


t if Ti = t2

1.5t if Ti = t1

2t if Ti = ∞

In the simulation setup, we construct the outcome variable based on a linear factor model

and separate the outcome variables of early-treated, late-treated, and never-treated groups

by a different vt(Ti), so that the conditional parallel trends assumptions (i.e. Assumptions

4 and 5) in Callaway and Sant’Anna (2021) are all violated.

In the first simulation (Simulation 1
def
= Not Staggered and Constant Treatment Effect

τk), we take the first 20 units as treated states
def
= Ti∈{1,...,20} = 10 and the rest 30 as never-

treated units
def
= Ti∈{21,...,50} = ∞. The outcome variable Yit is generated as mentioned above,

and the treatment effect τk = 300 ∀k ≥ 0 and τk = 0 otherwise. Therefore, the outcome

variable of the never-treated group Yit(∞) is composed of time and unit fixed effects and

a stochastic error term. The outcome variable of the treated group Yit(10) has a 300-unit

increase in addition to the composition of Yit(∞) when t ≥ 10.

In our second simulation (Simulation 2
def
= Not Staggered and Dynamic τk), we take the

first 20 units as treated states
def
= Ti∈{1,...,20} = 10 and the rest 30 as never-treated units

def
= Ti∈{21,...,50} = ∞. The outcome variable Yit is generated as usual, and the treatment

effect τk = max{0, 300 − 10k} ∀k ≥ 0 and τk = 0 otherwise, where 10 is the time-varying

coefficient and k is the event-time variable. Therefore, the outcome variable of the treated

group Yit(10) has a 300-unit increase in addition to the composition of Yit(∞) when t ≥ 10.

Then the size of the increment decreases linearly by 10 with respect to every 1 year increase

until the effect vanishes after the treatment launches.
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In the third and forth simulations (Simulation 3
def
= Staggered and Constant τk; Simu-

lation 4
def
= Staggered and Dynamic τk), we take the first 10 units as early-treated states

def
= Ti∈{1,...,10} = 10, the next 10 units as late-treated states

def
= Ti∈{11,...,20} = 20, and the rest

30 as never-treated units
def
= Ti∈{21,...,50} = ∞. The outcome variable Yit and the treatment

effect τk are defined similarly to those in Simulation 1 and 2.

For all of the simulations, we run TWFE-DID, SCM, CS-DID, SCM-DID, SCM-CS-DID,

and LASSO-CS-DID, where the last three estimators are our proposed methods at this stage.

First, we define the algorithms of SCM-DID, SCM-CS-DID, and LASSO-CS-DID:

Algorithm 1 SCM-DID

1: Input: Data = {Y }, Trajectory Fit Criteria
2: Output: τ̂SCM−DID

3: for each unit i in each treated group do
4: Form proper Y c,pre by choosing Y j,pre s.t. j /∈ same group as i and j ∈ Not-Yet-

Treated group
5: SCM on {Y i,pre,Y c,pre} and compute the synthetic counterpart Y synthetic

6: Compute the Trajectory Fit score TFi
def
=

√
||(Y i,pre−Y c,pre)||2/#(pre)

||Y i,pre||/#(pre)

7: if TFi ≤ Criteria then
8: TWFE-DID on {Y i,Y synthetic} to obtain τ̂SCM−DID

i

9: else
10: Next i
11: end if
12: end for
13: Calculate τ̂SCM−DID = mean(τ̂SCM−DID

i )

The intuition behind running SCM then running CS-DID is that SCM, if perform well,

will construct a synthetic counterpart follows the trajectory of the outcome variable of the

treated unit. This naturally implies the conditional parallel trends assumptions in Callaway

and Sant’Anna (2021) will hold. We include SCM-DID to provide an analogous argument

parallel with DID, SCM, and LASSO.

Here are some remarks on Algorithm 1: First, Trajectory Fit Criteria is a value set by

the practitioners. Through this paper, we would like to propose a range between 0.1 to 0.2.

Secondly, TFi is defined intuitively: it measures the pre-treatment discrepancies between the

outcome variable of the synthetic counterpart and that of the treated unit (i.e. how good
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SCM performs). Notice this paper intentionally uses a Root-Mean-Squared-Error type of

construction on the numerator of TFi, and an absolute mean of the pre-treatment outcome

variable of the treated on the denominator. We want to distinguish TFi from the traditional

R2 and emphasize the extent of the pre-treatment trajectory fit. However, one can easily

modify TFi to any traditional forms of measures for discrepancy WLOG. Thirdly, the reason

for the inclusion of TFi in SCM-related estimators is that: in our DGP, recall the generation

of vt(Ti). It is obvious that vt(10) = 0.5vt(20)+0.5vt(∞), so SCM will theoretically perform

perfectly on the units in the early-treated group. However, there is no way that SCM can

offer a good match on the units in the late-treated group. Abadie (2021) advises not to use

SCM if the pre-treatment fit (the TFi in our example) is poor. Thus, the use of TFi is to

exclude states with poor pre-treatment fit. Finally, SCM-DID is a biased estimation method

under staggered adoption (since running TWFE-DID on staggered units will be biased by

Theorem A.1). Therefore, we only use SCM-DID to smoothly introduce the main proposed

estimators of our paper: SCM-CS-DID and LASCM-CS-DID.

Algorithm 2 SCM-CS-DID

1: Input: Data = {Y }, Trajectory Fit Criteria
2: Output: τ̂SCM−CS−DID

3: for each unit i in each treated group do
4: Form proper Y c,pre by choosing Y j,pre s.t. j /∈ same group as i and j ∈ Not-Yet-

Treated group
5: SCM on {Y i,pre,Y c,pre} and compute the synthetic counterpart Y synthetic

6: Compute the Trajectory Fit score TFi

7: if TFi ≤ Criteria then
8: CS-DID on {Y i,Y synthetic} to obtain τ̂SCM−CS−DID

i

9: else
10: Next i
11: end if
12: end for
13: Calculate τ̂SCM−CS−DID = mean(τ̂SCM−CS−DID

i )

Algorithm 2 is analogous to Algorithm 1, and the only difference is that we conduct CS-

DID instead of TWFE-DID on {Y i,Y synthetic}. We would expect this method to perform

well under staggered adoption with heterogeneous treatment effect, since it combines the
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benefits of SCM and CS-DID. Notice SCM-CS-DID will work under Assumption 7 (See

Appendix).

Algorithm 3 LASSO-CS-DID

1: Input: Data = {Y }
2: Output: τ̂LASSO−CS−DID

3: for each unit i in each treated group do
4: Form proper Y c,pre by choosing Y j,pre s.t. j /∈ same group as i and j ∈ Not-Yet-

Treated group
5: LASSO on {Y i,pre,Y c,pre} and compute the synthetic counterpart Y synthetic

6: CS-DID on {Y i,Y synthetic} to obtain τ̂LASSO−CS−DID
i

7: end for
8: Calculate τ̂LASSO−CS−DID = mean(τ̂LASSO−CS−DID

i )

Algorithm 3 is analogous to Algorithm 2, and the only difference is that we conduct

LASSO instead of SCM on {Y i,pre,Y c,pre}. Notice we do not worry about the trajectory

fit of the synthetic counterpart by LASSO, because the issue of the late-treated group in

the SCM does not matter in the LASSO: vt(20) = 0.5vt(∞), so LASSO will theoretically

perform perfectly on the units in the late-treated group. Therefore, there is no intention

to include TFi at this moment. Notice LASSO-CS-DID will work under Assumption 8 (See

Appendix).

3.2 Simulation Results for Setup 1

Figure 1 shows the outcome paths of the four simulations. The colored lines are paths of

outcome variable averages clustered by early-treated, late-treated, and never-treated groups.

For each simulation, we generate 5, 000 datasets (each dataset contains N = 50 and T = 30

observations) and estimate τ by performing TWFE-DID, SCM, CS-DID, SCM-DID, SCM-

CS-DID, and LASSO-CS-DID. The set of estimates by different estimation methods of

τ , τ̂ i where i ∈ {TWFE-DID, SCM, CS-DID, SCM-DID, SCM-CS-DID, LASSO-CS-DID},

are then compared based on their distance between the τ . In other words, we care about

the extent of biasedness of the τ̂ is,
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Figures 2 to 7 are the kernel density plots of each τ̂ i from 5, 000 Monte Carlo simulations

for each data generating processes. Figures 2 and 4 suggest that TWFE-DID and CS-DID

provide biased estimates of the τ under all simulation settings since we form the DGP by

violating the conditional parallel trend assumptions.

Figures 3 and 5 show that SCM and SCM-DID give unbiased estimates of τ when there

is no dynamics in treatment effect. Moreover, we can observe that SCM-DID offers a less

varied distribution of the estimated τ than SCM because SCM-DID, in principle, averages

all values in the post-treatment window, and thus becomes more efficient.

Figures 6 and 7 show that both SCM-CS-DID and LASSO-CS-DID can offer unbiased

estimates of the τ under all simulation setups. Notice that the density plot of LASSO-CS-DID

is less spread out than that of SCM-CS-DID. As proved in Proposition 5.1, LASSO-CS-DID

gives more efficient result is expected.

If LASSO-CS-DID is so good, why we care about SCM-CS-DID? To illustrate the prac-

tical importance of SCM-CS-DID, we include a second simulation setup that has important

insights discussed in Section 5.2.

3.3 Setup 2

We generate a simulation framework {S × D} , different from the four-simulation setup

previously, to investigate the performance of SCM-CS-DID and LASSO-CS-DID. We will

demonstrate why LASSO-CS-DID (using Cross Validation or BIC) will be biased under this

setup and naturally introduce a new method: LASCM-CS-DID.

Assume we have N = 50 units and T = 30 periods under a balanced panel data setup.

The outcome variable for i-th unit at time t is denoted by Yit and generated based on a

non-stationary model as:

Yit(Ti) = vt(Ti, i) + τkDit + uit + ht(i)
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where Ti ∈ {10, 20,∞} is the treatment-group indicator, Dit
def
= 1t≥Ti,i/∈{1,...,5,11,...,15} is the

treatment dummy variable, and τk = 300− 10k is the time-varying treatment effect variable

where the index k
def
= max{0, t − Ti} is the event-time variable, and uit ∼i.i.d. N(0, 1) is the

noise term. The vt(Ti, i) is defined as

vt(Ti, i) =


t if Ti = t2 and i /∈ {1, . . . , 5, 11, . . . , 15}

1.5t if Ti = t1 and i /∈ {1, . . . , 5, 11, . . . , 15}

2t if Ti = ∞ and i /∈ {1, . . . , 5, 11, . . . , 15}.

The ht(i) is defined as:

ht(i) ∼i.i.d. U(−10, 10) if i ∈ {1, . . . , 5, 11, . . . , 15}

In this simulation setup, we construct the outcome variable based on a linear factor model,

and separate the outcome variables of early-treated, late-treated, and never-treated groups

by a different vt(Ti, i), so that the conditional parallel trends assumptions (i.e. Assumptions

4 and 5) in Callaway and Sant’Anna (2021) are all violated. Additionally, we force the first

half units in the early-treated and late-treated group to be absurd: The outcome variables of

these units follow a uniform distribution U(−10, 10) for all periods. Even though these units

are treated, their outcome variables respond with no change. Obviously, we want to exclude

these observations if we try to run SCM-CS-DID and LASSO-CS-DID. From the SCM-CS-

DID in the previous setup, we know that Trajectory Fit is a good method to decide which

synthetic counterparts by SCM are good and which states can stay in the new data set for

the CS-DID. It seems reasonable to extend the Trajectory Fit method to LASSO-CS-DID

as well.

Therefore, the improved-version of LASSO-CS-DID is defined as Algorithm 4:

We will show that even the improved-version of LASSO-CS-DID fail to exclude these

problematic states and leads to biasedness.
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Algorithm 4 LASSO-CS-DID (New)

1: Input: Data = {Y }, Trajectory Fit Criteria
2: Output: τ̂LASSO−CS−DID

3: for each unit i in each treated group do
4: Form proper Y c,pre by choosing Y j,pre s.t. j /∈ same group as i and j ∈ Not-Yet-

Treated group
5: LASSO on {Y i,pre,Y c,pre} and compute the synthetic counterpart Y synthetic

6: Compute the Trajectory Fit score TFi

7: if TFi ≤ Criteria then
8: CS-DID on {Y i,Y synthetic} to obtain τ̂LASSO−CS−DID

i

9: else
10: Next i
11: end if
12: end for
13: Calculate τ̂LASSO−CS−DID = mean(τ̂LASSO−CS−DID

i )

3.4 Simulation Results for Setup 2

For this simulation, we generate 5,000 Monte-Carlo Simulations (each dataset contains N =

50 and T = 30 observations) and estimate τ by performing SCM-CS-DID and LASSO-CS-

DID. Since the LASSO can sometimes produce a wonderful Trajectory Fit even if the unit is

having abnormal distributions/patterns, Figure 8 shows that LASSO-CS-DID is biased for

all TFC ≥ 0.02, and is severely biased when TFC = 0.01. Therefore, LASSO-CS-DID (by

using Cross Validation) cannot detect those problematic units and is not performing well.

One might argue that BIC prevents the LASSO from overfitting, but Figure 8 presents

that the LASSO-CS-DID (by using BIC) only performs well when TFC = 0.02, and becomes

severely biased even when a subtle increase of TFC occurred. This is intuitively correct:

BIC penalizes heavily on new member of control units into the synthetic component (if the

new member is not ”good”). Thus, when TFC = 0.02, the synthetic counterparts must be

extremely close to the treated unit. However, since BIC cannot exclude those abnormal

units by nature, with TFC increases, the estimated τ is inevitably biased. Also, we cannot

determine which value of TFC to use in reality. In comparison with SCM-CS-DID, which

gives unbiased estimates of τ for TFC ≤ 0.25, LASSO-CS-DID by BIC is not favourable for
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practical reasons.

From the first simulation (and latter in Section 5), we see how the LASSO-CS-DID

outperforms the SCM-CS-DID, so we do want to combine the advantages of SCM-CS-DID

(abnormalities detection) and LASSO-CS-DID (Efficiency and unbiasedness) together. This

motivates us to propose the final important method: LASCM-CS-DID (LASSO-SCM-CS-

DID), which is defined by Algorithm 5:

Algorithm 5 LASCM-CS-DID

1: Input: Data = {Y }, Trajectory Fit Criteria
2: Output: τ̂LASCM−CS−DID

3: for each unit i in each treated group do
4: Form proper Y c,pre by choosing Y j,pre s.t. j /∈ same group as i and j ∈ Not-Yet-

Treated group
5: SCM on {Y i,pre,Y c,pre} and compute the synthetic counterpart Y scm

synthetic

6: LASSO on {Y i,pre,Y c,pre} and compute the synthetic counterpart Y lasso
synthetic

7: Compute the Trajectory Fit score TFi using {Y i,pre,Y
scm
synthetic}

8: if TFi ≤ Criteria then
9: CS-DID on {Y i,Y

lasso
synthetic} to obtain τ̂LASCM−CS−DID

i

10: else
11: Next i
12: end if
13: end for
14: Calculate τ̂LASCM−CS−DID = mean(τ̂LASCM−CS−DID

i )

Notice we run both SCM and LASSO in LASCM-CS-DID. For any treated unit i in a

treated group, we use the synthetic counterpart Y scm
synthetic and actual pre-treatment outcome

variable to compute TFi. Thus, we can detect abnormalities. For those units without

abnormalities, we run CS-DID on Y lasso
synthetic and Y i to take the advantage of the efficiency

and unbiasedness of LASSO-CS-DID. Figure 8 demonstrates an unbiased estimate of τ when

TFC ≤ 0.25 for LASCM-CS-DID, which supports our results.
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4 Usual Statistical Models

The following subsections will consider a panel data setting with N + 1 units within t time

periods, where t = 1, . . . , T . Using the potential outcome setup (Rubin (1974); Holland

(1986); Imbens and Rubin (2015); Doudchenko and Imbens (2016)), each of the N +1 units

is assigned with a pair of potential outcomes Yi,t(0) and Yi,t(1), where Yi,t(0) denotes the

outcome for an individual unit i in time t in the untreated status, and Yi,t(1) denotes the

outcome for an individual unit i in time t in the treated status. Let τi,t = Yi,t(1) − Yi,t(0),

for i = 0, 1, . . . , N and t = 1, . . . , T , which stands for the causal effects at time t and unit i.

4.1 Notation

This paper adopts the same structure of notation as Doudchenko and Imbens (2016). Let

i = 1, . . . , N be the N units which do not receive the treatment through all time windows.

Let the unit i = 0 be the unit which is untreated when t = 1, . . . , T0, and receives treatment

when t = T0 + 1, . . . , T0 + T1, and the total time periods T = T0 + T1. Doudchenko and

Imbens (2016) denote the treatment received by Wi,t, satisfying:

Wi,t =


1 if i = 0, and t ∈ {T0 + 1, . . . , T} ,

0 otherwise.

The observed outcome for unit i in period t is Y obs
i,t , which is described by Wi,t as:

Y obs
i,t = Yi,t (Wi,t) =


Yi,t(0) if Wi,t = 0

Yi,t(1) if Wi,t = 1

Doudchenko and Imbens (2016) denote the time-invariant individual-level characteristics

by Xi, anM×1 column vector (Xi,1, . . . , Xi,M)⊤, for i = 0, . . . , N . They denote the covariate

matrix for the control group by Xc, an N ×M matrix with the (i,m)th entry equal to Xi,m,

for i = 1, . . . , N . They denote the covariate matrix for the treatment group byXt, anM -row
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vector with the mth entry equal to X0,m, so that X = (Xt,Xc). Similarly, Y obs
c, pre denotes

the N × T0 matrix with the (i, t)th entry equal to Y obs
i,T0−t+1. Y

obs
t,pre denotes a T0-vector with

the t-th entry equal to Y obs
0,t . The same applies to Y obs

c, post and Y obs
t,post for the post-treatment

period. Combining these matrices:

Y obs =


Y obs

t,post Y obs
c,post

Y obs
t,pre Y obs

c,pre

 =


Y t,post(1) Y c, post (0)

Y t,pre(0) Y c,pre(0)

 , and X =

(
Xt Xc

)

Immediately, we can see that τ̂0,t depends on Y t,post(1) and Y t, post (0). But we can only

observe Y t,post(1) and Y t, post (0) is unobservable. Therefore, various econometric approaches

are used for an accurate prediction of the relationship between the observed Y t,post(1) and

unobserved Y t, post (0) by using the information in the observed Y t,pre(0) and Y c,pre(0).

4.2 Constraints

Most of the literature imputes the unobserved Y0,T (0) by a linear combination of other

observed outcomes, that is:

Ŷ0,T (0) = µ+
N∑
i=1

ωi · Y obs
i,T .
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where Y obs
i,T consists of Y obs

c, post ,Y
obs
t, pre , and Y obs

c, pre . Doudchenko and Imbens (2016) focus

on this popular setting and discuss five constraints that are usually imposed on estimators:

µ = 0, (NO-INTERCEPT)

N∑
i=1

ωi = 1, (ADDING-UP)

ωi ≥ 0, i = 1, . . . , N, (NON-NEGATIVITY)

Y obs
t,pre = µ+ ω⊤Y obs

c,pre, (EXACT-BALANCE)

ωi = ω̄, i = 1, . . . , N (CONSTANT-WEIGHTS)

4.3 Difference-in-Difference

DIDmethod, with restrictions of (ADDING-UP), (NON-NEGATIVITY), and (CONSTANT-

WEIGHTS), is solving the following:

(
µ̂did , ω̂did

)
= argmin

µ,ω

{(
Y obs

t,pre − µ− ω⊤Y obs
c,pre

) (
Y obs

t,pre − µ− ω⊤Y obs
c,pre

)⊤}
.

In Doudchenko and Imbens (2016), they point out that the ω̂did does not depend on

the data due to the restrictions (ADDING-UP), (NON-NEGATIVITY), and (CONSTANT-

WEIGHTS) imposed. As a result, we can readily obtain:

ω̂did
i =

1

N
, i = 1, . . . , N,

µ̂did =
1

T0

T0∑
s=1

Y obs
0,s − 1

N · T0

T0∑
s=1

N∑
i=1

Y obs
i,s .

As clearly stated in Doudchenko and Imbens (2016), the estimates for Y0,t(0), for the periods
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t ≥ T0 + 1, are equal to:

Ŷ did
0,t (0) = µ̂did +

N∑
i=1

ω̂did
i · Y obs

i,t

=

(
1

T0

T0∑
s=1

Y obs
0,s − 1

N · T0

T0∑
s=1

N∑
i=1

Y obs
i,s

)
+

1

N

N∑
i=1

Y obs
i,t .

Remark 1: If T = 2, then the TWFE regression is equivalent to DID.

4.4 Constrained Regression

Constrained Regression, with restrictions of (NO-INTERCEPT), (ADDING-UP), and (NON-

NEGATIVITY) (as a special case of ADH SCM, all of the restrictions can be easily relaxed),

is solving the following:

ω̂constr =argmin
µ,ω

{(
Y obs

t,pre − µ− ω⊤Y obs
c,pre

) (
Y obs

t,pre − µ− ω⊤Y obs
c,pre

)⊤}
s.t. µ = 0,

N∑
i=1

ωi = 1 and ωi ≥ 0, i = 1, . . . , N.

The Lagrangian form of Constrained Regression is:

L(ω, λ, γ) =
(
Y obs
t,pre − ωTY obs

c,pre

) (
Y obs
t,pre − ωTY obs

c,pre

)T
+ λ

(
1−

N∑
i=1

ωi

)
−

N∑
i=1

γiωi

where λ and γ are the Lagrange multipliers. The dual problem is then solving:

(ω̂, λ̂, γ̂) =argmax
λ,γ

{argmin
ω

L(ω, λ, γ)}

s.t. λ ≥ 0, γi ≥ 0, i = 1, . . . , N.

The first observation is that, without any constraints, the objective function is equivalent

to that of Ordinary Least Squares.

By loosening the NON-NEGATIVE constraint, the optimization problem becomes a
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quadratic programming problem:

min
{(

Y obs
t,pre − µ− w⊤Y obs

c,pre

) (
Y obs

t,pre − µ− w⊤Y obs
c,pre

)⊤}
s.t. µ = 0,

N∑
i=1

wi = 1

Let Q = Y obs
c,pre

(
Y obs

c,pre

)T
, q = −Y obs

c,pre

(
Y obs

t,pre

)T
, and ι be the vector of ones ∈ RN , the

quadratic programming would have the following expressions:


Qω̂ + q + ιλ̂ = 0

ι⊤ω̂ − 1 = 0

=⇒


Q ι

ι⊤ 0




ω̂

λ̂

 =


−q

1




ω̂

λ̂

 =


Q ι

ι⊤ 0


−1 

−q

1


where λ̂ is the Lagrangian multiplier. We call this estimator Less Constrained Regression

(LCR) throughout the paper. Note that in the following discussions, when we mention

SCM, we intrinsically ignore covariates to keep things simple. So we will only discuss the

Constrained Regression estimator.

4.5 The Abadie-Diamond-Hainmueller Synthetic Control Method

SCMmethod, with restrictions of (NO-INTERCEPT), (ADDING-UP), and (NON-NEGATIVITY),

is solving the following:

(ω̂(V ), µ̂(V )) =argmin
ω,µ

{
(Xt − µ− ωTXc)

TV (Xt − µ− ωTXc)
}

s.t.
N∑
i=1

ωi = 1 and ωi ≥ 0, i = 1, . . . , N, µ = 0

(1)
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where

V̂ = argmin
V=diag(v1,...,vM )

{(
Y obs

t,pre − ω̂(V )⊤Y obs
c,pre

)⊤ (
Y obs

t,pre − ω̂(V )⊤Y obs
c,pre

)}
s.t.

M∑
m=1

vm = 1 and vm ≥ 0,m = 1, . . . ,M .

(2)

4.6 Least Absolute Shrinkage and Selection Operator

The LASSO regression is solving the following:

(ω̂, µ̂) =argmin
µ,ω

{(
Y obs

t,pre − µ− ω⊤Y obs
c,pre

) (
Y obs

t,pre − µ− ω⊤Y obs
c,pre

)⊤}
s.t. ∥ω∥1 ≤ t, µ = 0

where ∥u∥p =
(∑N

i=1 |ui|p
)1/p

is the standard ℓp norm. The Lagrangian form of LASSO is:

(ω̂, µ̂) =argmin
µ,ω

{(
Y obs

t,pre − µ− ω⊤Y obs
c,pre

) (
Y obs

t,pre − µ− ω⊤Y obs
c,pre

)⊤
+ λ∥ω∥1

}

5 Comparison Between SCM, LASSO, and LCR

We include LCR (not important in other sections) for the following discussion to better

illustrate our results. Again, our incentive to employ SCM and LASSO is to form a group of

synthetic counterparts that follows the trajectories of the treated units well. We will then be

able to perform CS-DID on the treated units and their corresponding synthetic counterparts.

Therefore, predictability, the ability of an estimator to give a close fit of the pre-treatment

trajectory would be one of our interests. Since for most economists, interpretability is the

core of policy evaluations, we want to study how SCM outperform LASSO in terms of

interpretability.
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5.1 Predictability

In terms of predictability, LASSO will outperform SCM and LCR when the tuning parameter

t ≥ 1, always giving a no-worse-than value (a smaller or equal value) of the objective function

than those of SCM and LCR. Recall for these estimators: SCM is solving:

min
{(

Y obs
t,pre − µ− ω⊤Y obs

c,pre

) (
Y obs

t,pre − µ− ω⊤Y obs
c,pre

)⊤}
s.t. µ = 0,

N∑
i=1

ωi = 1 and ωi ≥ 0, i = 1, . . . , N.

LASSO is solving:

min
{(

Y obs
t,pre − µ− ω⊤Y obs

c,pre

) (
Y obs

t,pre − µ− ω⊤Y obs
c,pre

)⊤}
s.t. ∥ω∥1 ≤ t, µ = 0

LCR is solving:

min
{(

Y obs
t,pre − µ− w⊤Y obs

c,pre

) (
Y obs

t,pre − µ− w⊤Y obs
c,pre

)⊤}
s.t. µ = 0,

N∑
i=1

wi = 1

We are interested in which objective function fed with respective optimal weights gives

the smallest value. Denote f(ω) =
(
Y obs

t,pre − w⊤Y obs
c,pre

) (
Y obs

t,pre − w⊤Y obs
c,pre

)⊤
, notice that the

objective function f is a standard quadratic function which is convex and continuous. The

constrains in SCM, LASSO, and LCR are obvious compact sets, so we can directly state the

following result:

Lemma 5.1. Given 1 ≤ t < ∞, f(ω∗
LASSO) ≤ f(ω∗

LCR) ≤ f(ω∗
SCM).

The proof is straightforward. Notice that the feasible set of LASSO ΩLASSO is a superset of

that of the LCR ΩLCR when 1 ≤ t < ∞, and ΩLCR is a superset of that of the SCM ΩSCM

, so the LASSO always yield a no-worse-than value of the objective function than LCR
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than SCM. The existences of the global minimums are direct results from the Weierstrass

Theorem:

Theorem 5.2. If g : Rn → R is continuous on compact set X, then the maximum and the

minimum of g(X) can be obtained (i.e. sup g(X) ∈ g(X) and inf g(X) ∈ g(X)). ■

We then want to state the relationship of f(ω∗
LASSO), f(ω

∗
LCR), and f(ω∗

SCM) with the

tuning parameter 0 < t < 1 (the case where t = 0 is trivial in practice). Notice the argument

for f(ω∗
LCR) ≤ f(ω∗

SCM) is the same as before, so we only need to discuss the relationship

between f(ω∗
LASSO) and f(ω∗

LCR). The usual way to select t is by Cross Validation. Suppose

CV chooses t = t̂, let’s define the feasible sets of the LASSO (given t = t̂), LCR, and SCM:

ΩLASSO
def
= {ω : ||ω||1 ≤ t̂}

ΩLCR
def
= {ω :

N∑
i=1

ωi = 1}

ΩSCM
def
= {ω :

N∑
i=1

ωi = 1, ωi ∈ R+}

Denote the true optimal weights ω∗ def
= argmin

ω∈RN

{(
Y obs

t,pre − ω⊤Y obs
c,pre

) (
Y obs

t,pre − ω⊤Y obs
c,pre

)⊤}
.

We either have ω∗ ∈ ΩLASSO or ω∗ /∈ ΩLASSO.

In the first case, ω∗= argmin
ω∈ΩLASSO

{(
Y obs

t,pre − ω⊤Y obs
c,pre

) (
Y obs

t,pre − ω⊤Y obs
c,pre

)⊤}
= ω∗

LASSO by

definition. Therefore, f(ω∗
LASSO) ≤ f(ω∗

LCR).

In the second case, we have two sub-cases: Either ω∗ ∈ ΩLCR or ω∗ ∈ (RN \ (ΩLASSO ∪

ΩLCR)). In the first case, by the same superset argument, we can conclude that f(ω∗
LCR) ≤

f(ω∗
LASSO) (If ω∗ ∈ ΩSCM , then conclusion becomes f(ω∗

SCM) = f(ω∗
LCR) ≤ f(ω∗

LASSO));

However, we do not have a decisive conclusion on the relationship between f(ω∗
LASSO)

and f(ω∗
LCR) in the second case. We invite researchers to generalize our Lemma 5.3 and

Proposition 5.1. Specifically, by showing the inequality relationship holds under ω∗ ∈

(RN \ (ΩLASSO ∪ ΩLCR)).
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Lemma 5.3. Suppose t chosen by CV s.t. 0 < t < 1, then gobj(ω∗
LASSO) ≤ hobj(ω∗

LCR) ≤

f obj(ω∗
SCM) only if ω∗ ∈ ΩLASSO. f(ω

∗
SCM) = f(ω∗

LCR) ≤ f(ω∗
LASSO) only if ω∗ ∈ ΩSCM .

Combining Lemma 5.1 and 5.3, we have the following Proposition:

Proposition 5.1. If t chosen by CV satisfies 1 ≤ t < ∞, then gobj(ω∗
LASSO) ≤ hobj(ω∗

LCR) ≤

f obj(ω∗
SCM). If t chosen by CV satisfies 0 < t < 1, then gobj(ω∗

LASSO) ≤ hobj(ω∗
LCR) ≤

f obj(ω∗
SCM) only if ω∗ ∈ ΩLASSO; f(ω

∗
SCM) = f(ω∗

LCR) ≤ f(ω∗
LASSO) only if ω∗ ∈ ΩSCM ■.

Since CV chooses t̂ based on MSE (here the data input are validation group and test

group), we suspect there will at least be some reduction in the objective function of LASSO

when 0 < t̂ < 1. Again, we invite researchers for further rigorous generalization.

Figure 9 is an example when the SCM, LASSO, and LCR yield the same optimal sets of

weights ω∗. All three sub-figures are under the programming that

min
{(

Y obs
t,pre − ω⊤Y obs

c,pre

) (
Y obs

t,pre − ω⊤Y obs
c,pre

)⊤}
s.t.

N∑
i=1

ωi = 1

where Y obs
t,pre =

[
0.5
0.5

]
, Y obs

c,pre =

[
1 0
0 1

]
, and therefore the true optimal weights ω∗ =

[
0.5
0.5

]
.

Sub-figures 9a, 9b, and 9c show that ω∗ are equal, and any other weights ω+ would not be

the optimal weights.

5.2 Interpretability

In Section 4 of Abadie (2021), Abadie compares the advantages of using SCM over the

traditional Linear Regression model. We include the most relevant advantages he summa-

rizes within the scope of our discussion on SCM, LASSO, and LCR: No Extrapolation and

Transparency of the Fit.

No Extrapolation. Because of the non-negativity and adding-up-to-one properties of

ωSCM , it is easy to see that the synthetic control counterparts would be inside of the convex

22



hull of the control units in the donor pool, so no extrapolation is guaranteed. Meanwhile,

LASSO and LCR, since there is no restriction on the sign of the weights, cannot guarantee

an interpolation within the support of the data. This property becomes extremely useful

when there is abnormalities in the dataset as in Section 3.3 and 6. SCM uses this property

to detect and exclude abnormal units based on Trajectory Fit, where then CS-DID can be

applied.

Transparency of the Fit. Since SCM protects the synthetic counterparts from the extrap-

olation, we can calculate the discrepancies between the counterparts and the corresponding

treated units during the pre-treatment period. Based on the size of the discrepancies, we

are able to conclude the ability of the units in the control group to approximate the treated

units by interpolation only. If the disparities between the counterparts and the treated units

are non-negligible, then Abadie et al. (2010, 2015) suggest not to employ SCM.

6 Case Study: The Effect of The 1984 National Mini-

mum Drinking Age Act on Beer Consumption

In this section, we present an empirical analysis of our framework, focusing on the impact of

The 1984 National Minimum Drinking Age Act on the average beer consumption across 50

states. The key variable of interest in our study is the beer consumption, which is measured

in gallons. We apply TWFE-DID, CS-DID, SCM-CS-DID, LASSO-CS-DID, and LASCM-

CS-DID and compare the results to provide a straightforward analysis of the policy’s impact

on beer consumption.

6.1 Background

The 1984 National Minimum Drinking Age Act was a significant piece of U.S. legislation

that aimed to reduce alcohol-related accidents by making it illegal for any individuals under

the age of 21 to purchase or publicly possess alcoholic beverages.
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In the early 1970s, many states in the U.S. lowered their drinking ages, primarily in

response to the argument that if 18-year-olds could be drafted to fight in wars (e.g. Viet-

nam War), they should also be allowed to drink. However, this led to some unintended

consequences. States that had lowered the drinking age saw an increase in alcohol-related

accidents among young drivers. This soon became a major public health concern (Carpenter

and Dobkin (2011)).

As the issue continued to gain prominence and relevance, an undeniable crescendo of

societal and stakeholder pressure began to mount, necessitating a thorough examination and

resolution. Various advocacy groups campaigned vigorously for a uniform national drinking

age of 21 (Grant (1984)).

In response to this mounting concern, in 1984, Congress passed the National Minimum

Drinking Age Act. Rather than directly imposing a restriction on the national drinking

age, the act used a clever mechanism: it threatened to withhold 10% of federal highway

construction funds from states that didn’t enforce the minimum legal drinking age of 21.

Given the significant amount of money at stake, all states eventually complied (Carpenter

and Dobkin (2011)).

6.2 Data Description

Our data source is the National Institute on Alcohol Abuse and Alcoholism, which contains

a balanced-panel data on apparent alcoholic beverage consumption by state-level and types

of alcoholic beverage from 1970 through 2021. Our variables include State ID, Year, and

Gallons of Beer. We pick the consumption of beer as our variable of interest because the

main type of alcoholic consumption for youths is beer. Reduced rates of alcohol use among

youth after the 1984 Act was primarily evident in decreased rates of beer consumption

(Toomey et al. (1996); Berger and Snortum (1985)). However, few research have discussed

the average amount of beer consumption decrease after the Act. This motivates us to focus

our discussion on estimating the average beer consumption. For simplicity and consistency
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with the simulation, no covariate is included.

We also classify states in the dataset. Some of states have multiple modifications of the

minimum drinking age (i.e. continuous treatment), so we exclude them from the dataset.

25 states remain after the removal. For the remaining states, there are differences in their

adoption time, as indicated in Figure 10, specifically:

The state which raised the drinking age to 21 in 1980: Illinois.

The state which raised the drinking age to 21 in 1982: Maryland.

States which raised the drinking age to 21 in 1984: Alaska, Delaware.

States which raised the drinking age to 21 in 1985: Arizona, Kansas.

States which raised the drinking age to 21 in 1986: Alabama, Hawaii, Mississippi, Ver-

mont.

The state which raised the drinking age to 21 in 1987: Idaho.

States which raised the drinking age to 21 in 1988: Colorado, Wyoming.

The never treated states which do not raise the drinking age (they have set 21 as the

minimum age for beer consumption long before the Act): Arkansas, California, Indiana,

Kentucky, Missouri, Nevada, New Mexico, North Dakota, Oregon, Pennsylvania, Utah, and

Washington.

After finalizing the states and their groups, we will demonstrate how we choose which time

periods to include. First, let’s begin with a simple case: Suppose there are only two states

{NC, NY} in the framework, where NC is the treated state that decreased the minimum

drinking age to 19 at 1975 and then adopted The 1984 National Minimum Drinking Age Act

at 1984, and NY is the never-treated state, then we can easily choose the time windows that

we want to keep:

1. The pre-treatment periods between 1975 and 1984, which are the periods under no

policy change.

2. The post-treatment periods.

Similarly, in the staggered adoption framework, we can divide the time windows into
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three parts:

1. The pre-treatment periods between the time that the first state adopted the Act under

no policy change (1975) and the time that the first state adopted the Act.

2. The post-treatment periods for the last state that adopted the Act.

3. Any periods between 1. and 2.

Notice the post-treatment (1989-2023) is too long for a discussion of the beer consumption

effect, and since we do not add time or state dummies except for TWFE-DID, we would like

to confine the total number of post-treatment periods within 10. Therefore, we establish a

balanced-panel dataset with 25 states from 1975 to 1995.

One remark that we want to mention is: Some of the states have exceptions regarding

drinking age. For example, in 2017, North Carolina signed the ”Brunch Bill”, making it

legal for bars, restaurants, and retail stores to sell alcohol earlier on Sundays. For simplicity,

we ignore these subtle differences between states local policies. The ignorability is justified

since most of the discrepancies between local policies took place after 20th century, beyond

the time periods we included in our dataset.

6.3 Results

Table 1 describes the summary statistics of the outcome variable beer. We can see a giant

spread of beer and a huge discrepancy between the maximum and minimum values of beer.

This may indicate outlier states in beer consumption, which makes sense due to the difference

in population and alcoholic culture. At this point, we do not want to remove outliers and

we will explain this later in this section.

Let’s first consider the validity of our baseline models TWFE-DID and CS-DID. Notice

it is obvious that the TWFE-DID would be biased, since it is under the staggered adoption

framework and by Theorem A.1. Table 11 is the outcome path plot of beer for Alabama

(AL), Arizona (AZ), and Indiana (IN) which are in group 1986, 1985, and NV respectively.

This path plot shows no obvious parallel trend (≡ conditional parallel trend condition since
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we do not have covariates) during the pretreatment windows of any two of these three

states. Therefore, neither Conditional Parallel Trends Based on ”Not-Yet-Treated”/”Never-

Treated” Groups (Assumptions 5 or 4) is triggered. Thus, we would expect CS-DID to be

biased.

Table 2 shows that the τ̂did = −4, 610, 101, which is statistically significant only under

10% level of significance. Table 3 shows that the τ̂csdid = −725, 521.3, which is statistically

insignificant under all standard levels of significance, and we know both of these two baseline

estimation methods are biased.

Moving on to SCM-CS-DID, LASSO-CS-DID, and LASCM-CS-DID. Table 4 shows the

estimated τ under Trajectory Fit Criterion = 0.1 using the three tools and the corresponding

selected states chosen by the mechanism described in the second simulation. First, notice an

abnormal τ̂ = 121, 524.5 by LASSO-CS-DID. As demonstrated in the second simulation, this

is an expected result since LASSO can sometimes produce a wonderful Trajectory Fit even

if the state is having abnormal distributions/patterns. For example, AL and AZ are in the

selected states in LASSO-CS-DID, but from Figure 11, we can directly observe abnormalities

in the outcome paths of AL and AZ: Given that they adopted the Act in 1986 and 1985

respectively, the beer consumption increased (though with a decreasing rate) in the following

year in AL, and increased largely with no decreasing rate in AZ in the following year after

the adoption. The beer consumption in AZ decreased dramatically in 1991 which is 5 years

after the adoption. Without controlling the covariates, there seems to be no reason that AL

and AZ should be in the selected states. However, as Table 5 demonstrates, the Trajectory

Fits by LASSO, especially that of AZ, are fantastic, so they stay in the pool and cause

problems, which makes LASSO-CS-DID invalid.

In comparison to LASSO-CS-DID which uses states selected by LASSO, SCM-CS-DID

and LASCM-CS-DID use states selected by SCM, which ensures interpolation and excludes

abnormal states. Returning to the example of AL and AZ, we can see in Table 5, that they

are both eliminated by SCM, since SCM cannot give a good pre-treatment Trajectory Fit
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less than TF Criterion based on all other states in the original dataset. Also, recall that

we choose to keep outliers in the dataset. Though outliers can have an inherent abnormal

distribution (which causes problems), they could have the same distribution as the other

states with an abnormal parameter. For example, AL is the largest state, which implies a

relatively large beer consumption. But it could still have the same underlying distribution

of beer consumption as some others states with different parameters. We do not want to

arbitrarily drop any information that is available to us, since it is possible that an ”outlier”

could be a good component of a synthetic counterpart, decided by SCM, for some treated

states. One immediate result of this is that SCM-CS-DID and LASSO-CS-DID are robust to

outliers and can utilize more information than those estimation methods which are not. This

property is desirable when there are a few individuals in the dataset, since any removal will

lead to a relatively large proportional drop in the number of the observations. Table 5 also

discloses the similarity between SCM-CS-DID and LASCM-CS-DID. This is consistent with

the results shown in the second simulation, since the set of states used in LASCM-CS-DID is

the same as SCM-CS-DID. By Proposition 5.1, we are good to conclude an average amount

of −2, 270, 766 on gallons of beer by The 1984 National Minimum Drinking Age Act.

7 Discussion and Limitations

There are several limitations that we recognize and want to demonstrate in this section.

Firstly, recall in the simulation DGP, we construct the outcome variables of the early-

treated, late-treated, and never-treat groups to satisfy SCM conditions. We recognize that

DGP are manipulated and unrealistic. As suggested by Abadie (2021), SCM should not

be considered if the pre-treatment trajectory is not fitted well. So one should disregard

SCM-CS-DID and LASCM-CS-DID if they found no units are selected even under large TF .

Secondly, Proposition 5.1 is not fully generalized in my opinion. Again, we invite re-

searchers for generalization.
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Thirdly, in the case study, there are a bunch of issues that need discussion and elaboration.

We include, for simplicity, only the outcome variable beer in our dataset. However, we admit

covariates (e.g. population) can play an inseparable role in giving an unbiased estimate of

the effect the 1984 Act on beer consumption. Moreover, there could have been anticipation

effect in the data, since the citizens in the late-adopted states should have changed their

beer consumption behavior based on information from the citizens from in the early-adopted

states. Also, Table 4 indicates only five states passed the TF score, which means a huge

reduction in observations for CS-DID.

Finally, we would like to invite researchers to further SCM-CS-DID and LASCM-CS-DID

with valid inference techniques.
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A Appendix

A.1 Assumptions and Theorems

(The following notations in Assumption 1 to 6 and Theorem A.2 come from Callaway and

Sant’Anna (2021))

Assumption 1 (Irreversibility of Treatment). D1 = 0 almost surely (a.s.). For t = 2, . . . , T ,

Dt−1 = 1 implies that Dt = 1 a.s.

Assumption 2 (Random Sampling). {Yi,1, Yi,2, . . . , Yi,T , Xi, Di,1, Di,2, . . . , Di,T }ni=1 is indepen-

dent and identically distributed (i.i.d.).

Assumption 3 (Limited Treatment Anticipation). There is a known δ ≥ 0 such that

E [Yt(g) | X,Gg = 1] = E [Yt(0) | X,Gg = 1] a.s. for all g ∈ G, t ∈ {1, . . . , T } such that t < g−δ

Assumption 4 (Conditional Parallel Trends Based on a ”Never-Treated” Group). Let δ be

as defined in Assumption 3. For each g ∈ G and t ∈ {2, . . . , T } such that t ≥ g − δ

E [Yt(0)− Yt−1(0) | X,Gg = 1] = E [Yt(0)− Yt−1(0) | X,C = 1] a.s.

Assumption 5 (Conditional Parallel Trends Based on ”Not-Yet-Treated” Groups). Let δ be

as defined in Assumption 3. For each g ∈ G and each (s, t) ∈ {2, . . . , T } × {2, . . . , T } such

that t ≥ g − δ and t+ δ ≤ s < ḡ,

E [Yt(0)− Yt−1(0) | X,Gg = 1] = E [Yt(0)− Yt−1(0) | X,Ds = 0, Gg = 0] a.s.

Assumption 6 (Overlap). For each t ∈ {2, . . . , T }, g ∈ G, there exist some ε > 0 such that

P (Gg = 1) > ε and pg,t(X) < 1− ε a.s.

We propose our Assumptions 7 and 8 for SCM-CS-DID, LASSO-CS-DID, and LASCM-

CS-DID to hold with the notations in Callaway and Sant’Anna (2021).
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Assumption 7 (Treated Units in Convex Hull of Not-Yet-Treated/Never-Treated Units). For

each i ∈ {i : Gi /∈ {∞ ∪ ḡ}}, let J = {j : Gj < Gi} and t ∈ {2, . . . ,min{Gn : n ∈ {Gn >

Gi}}} = T; for i s.t. Gi = ḡ, let J = {j : Gj = ∞} and t ∈ {1, . . . , n} = T

Yi,t(0) = ωTYJ,t(0)

where ω ∈ R#J, ω ≥ 0,
∑

ωi = 1.

Assumption 8 (Representation of Treated Units as a Linear Combination of Not-Yet-Treat-

ed/Never-Treated Units). For each i ∈ {i : Gi /∈ {∞ ∪ ḡ}}, let J = {j : Gj < Gi} and

t ∈ {2, . . . ,min{Gn : n ∈ {Gn > Gi}}} = T; for i s.t. Gi = ḡ, let J = {j : Gj = ∞} and

t ∈ {1, . . . , n} = T

Yi,t(0) = ωTYJ,t(0)

where ω ∈ R#J,
∑

ωi ≤ λ, where λ ∈ R+

Notice Assumptions 7 and 8 are essential conditions under which Theorem A.2 will hold

for unit i. In other words, for each unit i defined in Assumptions 7, we can represent

the outcome variable of i from period 1 to the start of the next treated group as a linear

combination of Not-Yet-Treated/Never-Treated units, and the weights are subject to non-

negativity and summing-up-to-one. Therefore, Assumption 4 will be invoked since for g ∈

G ∩ T:

E [Yi,t(0)− Yi,t−1(0) | Xi, Gi,g = 1] = E
[
ωTYJ,t(0)− ωTYJ,t−1(0) | Xi, Gi,g = 1

]
= E

[
ωTYJ,t(0)− ωTYJ,t−1(0) | Xi, GJ,g = 0

]
a.s.

= E [Yi,t(0)− Yi,t−1(0) | Xi, C = 1] a.s.

where the first equality is by Assumption 7. The second equality is by Assumption 7 and

the fact that Gi,g = 1 =⇒ GJ,g = 0, The third equality is by Assumption 7 again and the

definition of C when the time window is restricted to T. Notice YJ,t(0), by construction, are
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observable. Therefore, Theorem A.2 holds for unit i.

The argument for Assumption 8 is similar.

Remark. If we filter the pair of {Yi,t(0), ω
TYJ,t(0)} based on TFi, then Assumption 2 can

be relaxed to {Yi,1, Yi,2, . . . , Yi,T , Xi, Di,1, Di,2, . . . , Di,T }mi=1 is independent and identically

distributed (i.i.d.). for some 1 < m ≤ n. (i.e. we allow abnormalities as discussed in Section

3 and 6)

Theorem A.1 (Difference-in-Differences Decomposition Theorem). Assume that the data

contain k = 1, . . . , K timing groups of units ordered by the time when they receive a binary

treatment, k ∈ (1, T ]. There may be one timing group, U , that includes units that never

receive treatment. The OLS estimate, β̂DD, in a two-way fixed-effects regression is a weighted

average of all possible TWFE-DID estimators.

β̂DD =
∑
k ̸=U

skU β̂
2×2
kU +

∑
k ̸=U

∑
ℓ>k

[
skkℓβ̂

2×2,k
kℓ + sℓkℓβ̂

2×2,ℓ
kℓ

]
.

where the TWFE-DID estimators are:

β̂2×2
kU ≡

(
ȳ
POST (k)
k − ȳ

PRE(k)
k

)
−
(
ȳ
POST (k)
U − ȳ

PRE (k)
U

)
,

β̂2×2,k
kℓ ≡

(
ȳ
MID(k,ℓ)
k − ȳ

PRE(k)
k

)
−
(
ȳ
MID (k,ℓ)
ℓ − ȳ

PRE (k)
ℓ

)
,

β̂2×2,ℓ
kℓ ≡

(
ȳ
POST (ℓ)
ℓ − ȳ

MID (k,ℓ)
ℓ

)
−
(
ȳ
POST (ℓ)
k − ȳ

MID(k,ℓ)
k

)
.

The weights are:

skU =
(nk + nU)

2

V̂ D︷ ︸︸ ︷
nkU (1− nkU) D̄k

(
1− D̄k

)
,

V̂ D
kU

,

skkℓ =

(
(nk + nℓ)

(
1− D̄ℓ

))2 V̂ D
kℓ ,k︷ ︸︸ ︷

nkℓ (1− nkℓ)
D̄ℓ

1−D̄ℓ

1−D̄k

1−D̄ℓ

V̂ D
,

and
∑

k ̸=U skU +
∑

k ̸=U

∑
ℓ>k

[
skkℓ + sℓkℓ

]
= 1 (See Goodman-Bacon (2021) for more infor-

mation)
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Theorem A.2. Let Assumptions 1-3 and 6 hold. (i) If Assumption 4 holds, then, for all g

and t such that g ∈ Gδ, t ∈ {2, . . . T − δ} and t ≥ g − δ,

ATT (g, t) = ATT nev
ipw (g, t; δ) = ATT nev

or (g, t; δ) = ATT nev
dr (g, t; δ).

(ii) If Assumption 5 holds, then, for all g and t such that g ∈ Gδ, t ∈ {2, . . . T − δ} and

g − δ ≤ t < ḡ − δ,

ATT (g, t) = ATT ny
ipw(g, t; δ) = ATT ny

or (g, t; δ) = ATT ny
dr (g, t; δ).

(See Callaway and Sant’Anna (2021) for more information)

A.2 Tables

Table 1: Variable Description and Summary Statistics

Variable Symbol Description Type
Beer Consump-
tion

beer Total annual gallons of beer consump-
tion in a particular state

Continuous

State ID state State ID variable Discrete
Year year Time variable Continuous

Variable
Summary Statistics

N Mean St. Dev. Min Max

beer 525 94,273,414 127,350,317 7,829,000 691,050,432

35



Table 2: Two-Way-Fixed-Effect Difference-in-Difference Estimation of the Effect of
the 1984 Act on Beer Consumption

Dependent variable:

beer

Mean Standard Deviation

τ̂did −4, 610, 101∗ 2, 059, 478

Observations 525

R2 0.991

Adjusted R2 0.9901

Residual Std. Error 12,650,000 (df = 479 )

F Statistic 1,170 ∗∗∗ (df = 45 ; 479 )

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Callaway-Sant’Anna Difference-in-Difference Estimation of the Effect of the
1984 Act on Beer Consumption

Dependent variable:

beer

Mean Standard Deviation

τ̂csdid −725, 521.3 1, 236, 963

Observations 525

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4: SCM/LASSO/LASCM-CS-DID Estimation of the Effect of the 1984 Act on
Beer Consumption

Model τ̂ Selected States

SCM-CS-DID -2,119,416 CO, DE, IL, MD, VT

LASSO-CS-DID 121,524.5 AL, AK, AZ, CO, DE

HI, ID, IL, KS, MD

MS, VT, WY

LASCM-CS-DID -2,270,766 CO, DE, IL, MD, VT

Note: The Trajectory Fit Criterion is set to be 0.1. The number of observation for SCM-CS-DID is 59; The
number of observation for LASSO-CS-DID is 161; The number of observation for LASCM-CS-DID is 59

Table 5: States Selected by LASSO/SCM Based on Trajectory Fit

state TF by LASSO TF by SCM

AK 0.051 -

AL 0.015 -

AZ 0.037 -

CO 0.081 0.068

DE 0.011 0.039

HI 0.051 -

ID 0.013 -

IL 0.017 0.014

KS 0.002 -

MD 0.024 0.094

MS 0.016 -

VT 0.020 0.096

WY 0.028 -

Note: The Trajectory Fit Criterion is set to be 0.1. The symbol ”-” stands for states that are selected by
LASSO, but not selected by the SCM. The number of observation for SCM and LASSO is 525
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A.3 Figures

Figure 1: Simulation: Estimation Methods Under Uniform/Staggered Treatment Timing and
Treatment Effect Homogeneity/Heterogeneity - Trends in Outcome Path

This figure plots the average outcome paths by early-treated (line 1), late-treated (line 2 if
applicable), and never-treated groups (line 0) for unit N = 50 over time T = 30. The outcome
variable is generated under a linear factor model, increasing linearly in time t, with a noise term
∼i.i.d N(0, 1). Simulation 1 and 2 are under no staggered adoption setting, and the treatment
happens at the vertical dashed line t = 10, whereas they differs in terms of homogeneity of the

treatment effect τ (Simulation 1 has a constant τ while Simulation 2 has a dynamic τ). Simulation
3 and 4 are under staggered adoption setting, and the early treatment takes place at the red
vertical dashed line t = 10 and the late treatment happens at the green vertical dashed line

t = 20. The difference across Simulations 3 and 4 is similar to that between Simulations 1 and 2.
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Figure 2: Simulation: Estimation Methods Under Uniform/Staggered Treatment Timing and
Treatment Effect Homogeneity/Heterogeneity - TWFE-DID Density Plots

This figure draws kernel density estimate of the τ̂DID by the Two-way Fixed Effect
Difference-in-Difference from 5,000 Monte Carlo simulations for each data generating processes.
The distribution of the τ̂DID is represented by the curve, while the true τ = 300 is indicated by
the red vertical dashed line. In Simulation 1 and 3, TWFE-DID is biased towards 0. Additionally,

in Simulation 2 and 4, the τ̂DID is almost 0 or even has a wrong sign (the density plots are
invisible on the left of Simulation 2 and 4). Simulation 2 severely underestimates the τ since

TWFE-DID cannot capture the dynamics in τ . Simulation 4 underestimates the τ , because the
early-treated group is used as the control group in TWFE-DID estimation on the late-treated

group in the late-treatment window (after t = 20). All simulations underestimates the τ since the
parallel trend assumption is not hold by construction.
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Figure 3: Simulation: Estimation Methods Under Uniform/Staggered Treatment Timing and
Treatment Effect Homogeneity/Heterogeneity - SCM Density Plots

This figure draws kernel density estimate of the τ by Synthetic Control Method from 5,000 Monte
Carlo simulations for each data generating processes. The distribution of the τ̂SCM is represented
by the curve, while the true τ = 300 is indicated by the red vertical dashed line. In Simulation 1
and 3, SCM gives unbiased but skewed estimates of τ . However, in Simulation 2 and 4, the τ̂SCM

is biased towards 0 since SCM cannot capture dynamics in treatment effect.
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Figure 4: Simulation: Estimation Methods Under Uniform/Staggered Treatment Timing and
Treatment Effect Homogeneity/Heterogeneity - CS-DID Density Plots

This figure draws kernel density estimate of the τ by the Callaway and Sant’Anna’s
Difference-in-Difference from 5,000 Monte Carlo simulations for each data generating processes.

The distribution of the τ̂CS is represented by the curve, while the true τ = 300 is indicated by the
red vertical dashed line. In all simulations, CS-DID gives biased estimates of τ since the

conditional parallel trend assumptions do not hold by construction.
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Figure 5: Simulation: Estimation Methods Under Uniform/Staggered Treatment Timing and
Treatment Effect Homogeneity/Heterogeneity - SCM-DID Density Plots

This figure draws kernel density estimate of the τ by SCM-DID from 5,000 Monte Carlo
simulations for each data generating processes. The distribution of the τ̂SCM−DID is represented
by the curve, while the true τ = 300 is indicated by the red vertical dashed line. In Simulation 1
and 3, SCM-DID gives unbiased estimates of τ . However, in Simulation 2 and 4, the τ̂SCM−DID

is biased towards 0 since neither SCM nor TWFE-DID can capture dynamics in treatment effect.
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Figure 6: Simulation: Estimation Methods Under Uniform/Staggered Treatment Timing and
Treatment Effect Homogeneity/Heterogeneity - SCM-CS-DID Density Plots

This figure draws kernel density estimate of the τ by SCM-CS-DID from 5,000 Monte Carlo
simulations for each data generating processes. The distribution of the τ̂CSCM is represented by
the curve, while the true τ = 300 is indicated by the red vertical dashed line. In all simulations,

SCM-CS-DID gives unbiased estimates of τ .
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Figure 7: Simulation: Estimation Methods Under Uniform/Staggered Treatment Timing and
Treatment Effect Homogeneity/Heterogeneity - LASSO-CS-DID Density Plots

This figure draws kernel density estimate of the τ by LASSO-CS-DiD from 5,000 Monte Carlo
simulations for each data generating processes. The distribution of the τ̂LASSO−CS−DID is

represented by the curve, while the true τ = 300 is indicated by the red vertical dashed line. In all
simulations, LASSO-CS-DID gives unbiased estimates of τ .
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Figure 8: Simulation: Estimated ATT from Different Estimators against Trajectory Fit Criteria

This figure draws estimate of the τ by SCM-CS-DID, LASSO-CS-DID (using Cross Validation),
LASSO-CS-DID (using BIC), and LASCM-CS-DID from 5,000 Monte Carlo simulations. The
true τ = 300. Notice that LASCM-CS-DID and SCM-CS-DID are overlapping and giving

unbiased estimates of τ when TFC is less than 0.25, and gradually decreases when TFC increases.
LASSO-CS-DID by CV gives a 292.61 estimate of τ when TFC is 0.02, and a disastrous estimate
= 5.02 when TFC is 0.01. LASSO-CS-DID by BIC gives an unbiased estimate of τ when TFC is

0.02, but the estimate becomes biased dramatically with a slight increase in TFC from 0.02.
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Figure 9: Graphical Illustration of the SCM, LASSO, and LCR

(a) The SCM (b) The LASSO

(c) The LCR

46



Figure 10: Stagggered Adoption of The 1984 National Minimum Drinking Age Act from 1980 to
1988

This figure shows the information of states included in our dataset. States marked with grey are
ones that are removed from the dataset; States with orange are never-treated states (NV); States
marked from light-green to blue are states adopted the Act on a continuous scale from 1980 to

1988.
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Figure 11: Outcome Path of Beer Consumption of Alabama, Arizona, and Indiana

This figure depicts the outcome path of gallons of beer consumption of Alabama (AL), Arizona
(AZ), and Indiana (IN) which are in group 1986, 1985, and NV respectively. We observe no

apparent parallel trends/conditional parallel trends between any two of these three states, and
this violates the assumption of CS-DID.
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