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1 Introduction

This paper develops a computational framework to analyze dynamic auctions and then
applies it to illustrate the possible implications of different rules for information ex-
change in that setting. A realistic framework for analyzing dynamic auctions requires
the framework to allow for serially correlated asymmetric information. The litera-
ture on the numerical analysis of dynamic games with serially correlated asymmetric
information was considered by Fershtman and Pakes (2012), and we provide the modi-
fication required to use it to analyze dynamic auctions. More fundamentally we extend
their notion of restricted experience based equilibrium by adding a consistency require-
ment on the boundary of the recurrent class of states and show how to compute and
test for boundary consistent equilibria.

Dynamic auctions are sequential auctions in which the state of the bidders, and
therefore their evaluation of the good that is auctioned, change endogenously depending
on the history of auction. The value of winning an auction to produce aircraft or ships
depends on the backlog or the order book of the firm, and the value of winning a
highway repair project or a timber auction depends on whether the inputs currently
under the control of the firm are already fully committed for the following period. The
fact that the auction is dynamic implies a rich set of strategic incentives. For example,
a firm may choose to allow a competitors’ state to transition to a point where that
competitor becomes a less aggressive market participant in order to win a subsequent
auction at a lower bid.

As an illustration we examine how the extent of information sharing impacts com-
petition in a dynamic sequence of procurement auctions. Our goal is to shed light
on the extent to which dynamic considerations can color the way antitrust regulators,
procurement agencies, and other policy agencies approach the regulation of informa-
tion sharing. The specific model we investigate is loosely based on the description of
timber auctions in Baldwin, Marshall and Richard (1997), although, to keep the model
simple, many departures are made from the precise institutional features described
therein. Having this specific empirical example in mind eases much of the exposition.
In each period, two firms can bid for the right to harvest a lot of timber in a first
price sealed bid auction. Each firm has a stock of timber that it already has the right
to harvest (its inventory). This stock is private information, and its evolution is the
source of dynamics. To compete in the auction, firms must pay a participation fee
and simultaneously submit a bid. A firm may also choose to not participate. The
winner of the auction, if any, receives the right to harvest the lot, and discovers how
much harvestable material it contains. Harvest then occurs, which depletes the stock
of timber each firm has.1

In our benchmark model, once every T periods, there is a full revelation of the
state variable. That is, during this revelation period each firm observes the stock of
unharvested timber of its competitor. Information sharing is modeled as shrinking the

1The closest model to ours is that estimated in the innovative contribution of Jofre-Bonet and Pesendorfer
(2003). This framework is further extended in Groeger (2014), Saini (2013), Balat (2015) and Jeziorski and
Krasnokutskaya (2016). Jofre-Bonet and Pesendorfer’s model, and those that follow, has private information
that is conditionally independent across states. That is, conditional on (observed) state variables, knowing
the private information of a rival last period provides no information as to the private information of the
rival this period. This is not the case in our model. In particular, this means that the competitors’ prior
period bid is a signal on its current state, and that information sharing has persistent value across periods.
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time interval between full revelation periods. We also investigate a model in which
firms decide whether to share information. Voluntary information sharing involves
firms making a choice every T periods as to whether to reveal every period for the
next T periods. For voluntary information sharing to occur over the next T periods,
all firms must want to share information. Finally we compare the results from these
models to those we obtain from a model with myopic firms.

The numerical analysis of this game illustrates how information sharing can, through
increases in the precision of the firm’s beliefs about its competitors’ states, affect bid-
ding behavior at a given state. This, in turn, shapes the desirability, and therefore the
likelihood, of being in different states. An important point to bear in mind is that,
conditional on the information that they have, firms compete unilaterally (there is no
cartel like behavior). However more information induces firms to act so as to spend
more time in states where competition is less intense; which are states where both firms
have larger stocks of timber. That is an increase in information increases the intensity
of bidding and decreases profits in just about all states, but because of the incentives
to move to states where bidding intensity is lower, increasing information decreases the
average bid and increases average profits. Since increasing information induces firms
to spend more time in states with higher inventory it also increases total sales from
the auctioned timber.

Interestingly, although more information increases the value of firms, in our vol-
untary information exchange game firms have difficulty committing to exchange infor-
mation and most often choose not to share. Finally when we compare to a situation
where firms do not care about the future (have a discount factor of zero), the extent
of information sharing has negligible effects.

This paper is organized as follows. Subsection 1.1, which follows, discusses the
related literature. In subsection 1.2 we provide a brief review of the role of infor-
mation sharing in antitrust policy. Section 2 describes our baseline model, and then
the information sharing and the voluntary information sharing variants of the model.
Then, in section 3, computational details are described. A reader not concerned with
computational details can skip this section and proceed directly to section 4. Section
4 discusses the numerical analysis, focusing on the competitive impact of information
sharing. Section 5 concludes.

1.1 Related Literature

Our paper is closely related to the literature on the numerical analysis of dynamic
oligopolistic games that uses the Ericson and Pakes framework (1995; for a survey of
this literature see Doraszelski and Pakes, 2007). Recent applications of this methodol-
ogy to questions related to antitrust policy include Besanko, Doraszelski and Kryukov
(2014), on predatory pricing, and Mermelstein, Nocke, Satterthwaite and Whinston
(2014), on mergers. Within this literature, the closest papers to ours are Saini (2013)
and Jeziorski and Krasnokutskaya (2016). Both these papers apply the Markov Per-
fect equilibrium concept to auction settings, exploring the optimal procurement policy
given capacity constrained suppliers and subcontracting, respectively.2

As noted, our paper differs from this literature in that our focus is on information
asymmetry, as in Fershtman and Pakes (2012). While that paper focuses on capital

2Both these papers build on Jofre-Bonet and Pesendorfer (2003).
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accumulation games, we consider a more complex structure where, since we are mod-
eling an auction, the evolution of a firm’s state depends not only on its own action (its
bid), but also on the bids of its competitors. We also introduce and operationalize a
boundary consistency condition that rules out equilibria and can be rationalized either
by prior information or experimentation.

Within the auction literature Maskin and Riley (2000) consider asymmetric auctions
and show that sealed bidding tends to favor weaker bidders while in open auction the
bidder with the highest value win. Athey, Levin, and Seira (2011) extend the framework
to a repeated auction. They consider a theoretical model of a repeated auction and
then use data on timber auctions to conduct an empirical analysis of the effect of the
type of auction (open or sealed bid) on the firms participation and bidding.

Our paper also relates to the empirical literature on bidding collusion. There are
several approaches in the literature for examining whether an auction is competetive
or collusive. See, for example, Porter and Zona (1993, 1999), Baldwin Marshall and
Richard (1997), Pesendorfer (2000), Bajari and Ye (2003), and Asker (2010). Aoyagi
(2003) considers collusion in a repeated auction when bidders are allowed to communi-
cate with each other before each auction. In another paper Athey and Bagwell (2008)
consider collusion between competitors in a repeated homogenous-good-bertrand mar-
ket, in which costs (types) are private information and evolve over time according to an
exogenous markov process. In contrast to the environment considered here, the evolu-
tion of costs (types) in that model is unaffected by the actions of any player. We do not
have specific collusion in our setup but we do examine information exchange regarding
the firms’ inventories on the firms’ participation and bidding behavior. The policy
implications of our paper relate also to the extensive literature on information sharing
in oligopoly see Clarke (1983), Gal-Or (1985, 1986), Shapiro (1986), and Kirby (1988).
For a survey of this literature see Kuhn and Vives (1995). More recent empirical work
includes Doyle and Snyder (1999) and Luco (2017).

1.2 Background: information exchange and policy

Though explicit agreements to fix prices are per se violations of the antitrust laws, the
legal treatment of information sharing among competitors is less clear.3 The legality
of an exchange of price information is determined in part by the extent to which the
audience is restricted. Clearly, a merchant who posts prices in a public display is
communicating price information to competitors but is not in violation of statutes.
More problematic is the communication of price information between competitors in a
way that consumers do not have access to.4 U.S. courts apply a rule of reason test to
decide whether the exchange of price information constitutes an unreasonable restraint

3The canonical statement of the per se nature of price fixing under section 1 of the U.S. Sherman Act is
United States v. Socony-Vacuum Oil 310 U.S. 150 (1940). Information sharing also tends to fall within the
scope of section 1 of the Sherman Act. See the majority decision in United States v. Container Corp. 393
U.S. 333 (1969).

4In Container Corp the U.S. Supreme Court held that, despite any agreement on pricing, the exchange
of information about specific prices offered to specific customers was a violation of the antitrust laws. This
case created confusion as to whether per se treatment applied to information sharing. This was clarified in
United States v. Citizens & Southern National Bank 422 U.S. 86., which explicitly adopted a rule of reason
approach. In doing so the court appealed to the idea that price exchange facilitated price stabilization (a
form of price fixing).
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of trade.5 Factors that are taken into account include the level of market concentration,
the fungibility of the products, the nature of the information exchanged, its timeliness
and specificity, and whether the information is made publicly available.6

U.S. courts take a sympathetic view of the sharing of non-price information rec-
ognizing that efficiencies are more likely from the sharing of information regarding
production processes and costs. For instance, the Supreme court in the 1925 Maple
Flooring Manufacturers decision, held that:

“... corporations which openly and fairly gather and disseminate information
as to the cost of their product, the volume of production, ..., stocks of
merchandise on hand, ... without however reaching or attempting to reach
any agreement or any concerted action with respect to prices or production
or restraining competition do not thereby engage in unlawful restraint of
commerce...”7

Contemporary guidance from the FTC and DoJ states that “The sharing of infor-
mation relating to price, cost, output, customers, or strategic planning is more likely
to be of competitive concern than the sharing of less competitively sensitive informa-
tion.”8 This suggests a somewhat more nuanced view in modern times. The E.U., by
contrast, has tended to take a harsher view of both price, and non-price, information
sharing agreements. The exchange of information relating to future prices is consid-
ered a restriction of competition by object (equivalent to a per se offense in the U.S.).9

This may include non-price strategic information. Our example illustrates that a harsh
approach to the sharing of information can be misguided.

2 A Model of a Dynamic Auction

We consider a model in which there are n firms in the market and no entry into and
exit from the industry. Each of the firms can harvest and sell a portion of their stock
of lumber each year at a fixed price. The actual quantity that can be sold in each
period depends on a firm specific random outcome of a harvesting process from a stock
of timber that has not yet been harvested, and is private information. The stock
will be increased if the firm wins a procurement auction which occurs every period.
The procurement auction is a simple first price sealed bid auction. Participation in
the procurement auction is costly, and participation decisions are public information
observed by all firms. However, the amount of lumber per lot won in the auction is
random and observed only by the winning firm.

There are two types of periods. Periods with full information exchange and periods
without information sharing. In our baseline model full information exchange occurs

5In this context, an unreasonable restraint would be one that synthesizes or facilitates a cartel-like pricing
structure. Information exchange may also constitute a facilitating practice in inferring the existence of an
explicit price fixing conspiracy.

6A modern discussion of the judicial approach taken can be seen in the decision of Justice Satomayor,
while sitting as a judge on the second circuit court of appeal, in Todd v. Exxon Corp 275 F.3d 191 (2001).

7see Maple Flooring Manufacturers’ Assn. v. United States 268 U.S. 563 (1925)
8See FTC/DoJ’s April 2000 Antitrust Guidelines for Collaborations Among Competitors at page 15.
9See the E.U. 2011 Guidelines on the applicability of Article 101 of the Treaty on the Functioning of the

European Union to horizontal co-operation agreements and Dole Food Company et al. v. Commission.

5



every T periods. There are a number of possible rationals for this and it keeps the
information set finite.10

We begin with the timing of the events that occur within a period. Then, we
describe the overall structure of the game. Following that, we define the equilibrium
conditions, explain our computational procedure, and then provide and compare results
from models with different amounts of information sharing.

Timing

1. Each firm brings into the period a stock of timber that can be harvested (ωi,t).

2. Every period begins with the announcement a first price sealed bid auction.

3. Firms observe the realization of their stochastic participation fee. We assume
that Fit ∼ U [Fl, Fh]. The realization is not observed by rival firms.

4. Each firm decides whether to participate in the auction. All the firms that de-
cide to participate submit their bids simultaneously. At the time of bidding,
participation decisions of rival firms are not observable.

5. The rules of the auction define an increment b. Bids must be multiples of this
increment. Hence bids must be elements of the set

{
b, 2b, 3b, ..., b

}
.

6. The highest bid wins. If high bids are tied, then the winner is decided randomly,
with each tied bid having an equal chance of winning. We denote the probability
of winning by firm i by pw(bi, b−i). The winning bid, the identity of the winner,
and the participants in the auction become public information.

7. If there is information exchange it occurs at this point. If it is a period of in-
formation exchange (which occurs every T periods), then ωi,t of all the firms is
revealed. Otherwise the new public information revealed in the period is; who
participated in the auction, denoted as pt, who won the auction at period t, de-
noted by iwt , and the winning bid b∗t . We denote the new public information as
ξnt ≡ [iwt , b

∗
t , pt]. In a period of information exchange the new public information

is [iwt , ωt], the identity of the firm that won the auction and the observed state
ωt ≡ {ωi,t}.11

8. The winner discovers the amount of timber on the plot it won. This is given
by θ + ηt where θ is the average amount and ηt is an i.i.d (across time) discrete
random variable. ηt is not observed by competing (losing) firms. The timber in
stock (ωi,t) is updated accordingly. There is a random realization of the ability to
extract, e+ εi,t where εi,t is a discrete random variable with probabilities p(εi,t).
The draws on εi,t are independent over agents and not observed by competitors.

9. Harvest is made and each firm sells all its harvested timber at a unit price of $1.
Thus a firm’s per period revenue is given by min{ωi + I{i=win}(θ + η), e + εi},

10See Fershtman and Pakes (2012) for a list of ways to keep the information set finite. Information
revelation every T periods is convenient for us as it allows us to directly compare equilibria based on a
sequence of larger information sets. We can justify our structure by; assuming that a regulator imposes
mandatory periodic information revelation, or assuming the existence of a trade group that facilitates the
sharing of information every T periods.

11Note that at a period of information revelation the winning bid and the participation decision of that
period do not enter the public information because they are payoff and informationally irrelevant. They do
not provide any additional signal on the ω of the firms, as these ω’s are revealed at that periods.
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where I{i=win} is an indicator function which takes the value of one if i wins the
auction and zero elsewhere.12 The quantity harvested by firm i is not observable
by other firms.13 Note that if bi = ∅ signifies no participation, a firm’s expected
profit, given (bi, b−i, Fi, ωi), are

πe(bi, b−i, Fi, ωi) =∑
η,εi

[
pw(bi, b−i)[min{ωi+(θ+η), e+εi}−bi]+[1−pw(bi, b−i)] min{ωi, e+εi}

]
p(ε)p(η)−{bi 6= ∅}Fi.

10. All the firms updates their private ωi.

Agents’ Strategy Spaces.

In general, the strategy space could include everything observed from the history of the
game. Most of the early applied literature focused on equilibria with strategies that
depend only on variables which are either “payoff” or “informationally” relevant. The
payoff relevant variables are defined, as in Ericson and Pakes (1995) or Maskin and
Tirole (2001), to be those variables that are not current controls and affect the current
profits of at least one of the firms. In a game with asymmetric information observable
variables that are not payoff relevant will affect behavior if they are informationally
relevant. A variable is informationally relevant if and only if even if no agents’ strategy
depended upon the variable some player can improve its expected discounted value
of net cash flows by conditioning on it; for more details see Fershtman and Pakes
(2012). That paper also shows that in models with periodic revelation of information
there exists an equilibrium which only conditions on the revealed information and
the information that has become available since the revelation. We focus on this
equilibrium in the remainder of the paper.14

The information set of firm i consists of public and private information. The public
information at the beginning of period t, denoted by ξt consists of; τt ∈ [1, . . . , T ],
the time since last information exchange, ωt−τt , the last revealed ω vectors, and the
τt-period history of winning bids, winner identities and participant identities. Formally
ξt = {τt, ωt−τt , ξnt−1, ..., ξnt−τt}.

15 Information revelation occurs when τt = T (which is
period τt = 0 for the next cycle). The private information at the point in time decisions
are made includes ωi,t and Fi,t. However since Fi,t is i.i.d., it enters the value function
linearly, and does not have an independent effect on future values whereas the other
state variables do. As a result it will be useful to have notation for Ji,t = (ωi,t, ξt)
separately from Ii,t = (Ji,t, Fi,t).

Strategies. There are two elements of a firm’s strategy; the participation strategy
and bidding strategy. We denote firm i strategy as b(Ji, Fi) → {B ∪∅} where b = ∅
signifies no participation.

12Here, and in what follows, we drop time subscripts, except where they add clarity.
13Otherwise the observable harvested quantity may serve as a signal regarding ωi.
14Equilibrium is defined formally in section 2.2.
15Note that for a period with information revelation the public information includes only the identity of

the winner in the auction and not the winning bid or the participants identity as these variables are not
informationally relevant.
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2.1 The Dynamic System

We let V (Ii) be the value of the game for a player i given his information set Ii. We
have

V (Ji, Fi) = max
{
W (∅|Ji),max

b∈B
[W (b|Ji)− Fi]

}
(1)

where (i) W (∅|Ji) is the value of the game if the firm decides not to participate in the
auction in that period, and (ii) W (b|Ji) is the value when the firm participates and
bids b ∈ B.

Now consider the value of the game when firm i participates in the auction and
bids b ∈ B. For every possible Ji we define pw(b|Ji) to be the player’s perception about
the probability of winning the auction when it bids b and we let iw be the winning
firm. Letting β be the discount factor, the firm’s expectation of current period revenue
(which excludes Fi) is

πe(b|Ji) =
∑
εi,η

[
pw(b|Ji)

(
min{ωi+θ+η, e+εi}−b

)
+[1−pw(b|Ji)] min{ωi, e+εi}

]
p(εi)p(η), .

(2)
It follows that, for b ∈ B,

W (b|Ji) = πe(b|Ji) + (3)

pw(b|Ji)β
∑

εi,η,ξ′F ′i

V
(
ω′(ω, η, εi), ξ

′, F ′i

)
p(ξ′|ξ, ωi, b, i = iw)p(F ′i )p(η)p(εi)

+(1− pw(b|Ji))β
∑

εi,ξ′,F ′i

V
(
ω′(ω, εi), ξ

′, F ′i

)
p(ξ′|ξ, ωi, b, i 6= iw)p(F ′i )p(εi)

where ω′(ω, η, εi) is the updated ωi when the firm does win the auction and is a function
of the random outcomes of the size of the lot won (η) and the harvesting decision (εi);
i.e. ω′(ω, η, εi) = max{0, ωi− (e+ εi) +θ+η}. When the firm does not win the auction
its updated ω is a function of the initial ω and the random outcome of the harvesting
process, εi, i.e. ω′(ωi, εi) = max{0, ωi − (e+ εi)}. p(ξ′|ξ, ωi, b, i = iw) is the probability
distribution of future public information given the current public information ξ, the
firm’s private information ωi and the identity of the firm winning the auction with
bid b. Similarly, p(ξ′|ξ, ωi, b, i 6= iw) is the probability distribution of future public
information given that the firm loses the auction.

Lastly the continuation value when the firm chooses not to participate in the auc-
tion, our W (∅|Ji), is

W (∅|Ji) = πe(∅|Ji) + β
∑

εi,ξ′,F ′i

V
(
ω′(ω, εi), ξ

′, F ′i

)
p(ξ′|ξ, ωi, b = ∅)p(F ′i )p(εi)

where p(ξ′|ξ, ωi, b = ∅) is the probability distribution of future public information
given the current public information, the firm’s private information, and the choice of
not participating in the auction.
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2.2 The Restricted Experience Based Equilibrium

We now derive the conditions of a restricted experience based equilibrium for this
game (see Fershtman and Pakes 2012). We let s be the set consisting of the payoff and
informationally relevant states of all the firms, that is s = (J1, ..., Jn) when all the Ji
have the same public component ξ. We will say that Ji = (ωi, ξ) is a component of s
if it contains the information set of one of the firms whose information is combined in
s. Note that we can also write s = (ω1, ..., ωn, ξ) and define the set of possible states
S = {s : (ω1, . . . , ωn) ∈ Ωn(ω), ξ ∈ Ω(ξ)}.

Definition of a REBE: A restricted experience based equilibria consists of the
following three objects.

1. A set R that is a subset of the state space (i.e. R ⊂ S).

2. Bidding and participation strategies, b∗(Ji, Fi) for each firm and for every Ji
which is a component of any s ∈ S and Fi ∈ [Fl, Fh].

3. A set of numbers W ≡ {W ∗(b|Ji)b∈B∪∅} that, for every Ji that is a component
of any s ∈ S, have an interpretation as the firm’s perceptions of the expected
discounted values of current and future cash flows conditional on its information
set should it bid b or not participate in the auction (i.e. where b = ∅).

For these objects to define a REBE they must satisfy the following three conditions.

C1: R is a recurrent class. The Markov process generated by any initial
condition s0 ∈ R, and the transition kernel generated by {b∗(Ji, Fi)}i=1,...,n

Ji∈s∈S,Fi∈[Fl,Fh]
has R as a recurrent class; that is, with probability one, any subgame starting from an
s0 ∈ R will generate sample paths that are within R forever.

C2: Optimality of strategies. Conditional on W ≡ {W ∗(b|Ji)b∈B∪∅}Ji∈s,s∈S ,
the strategies are optimal. That is

b∗(Ji, Fi) = arg max
b∈B∪∅

[W ∗(b|Ji)− {b 6= ∅}Fi] .

C3: Consistency of values on R. Consistency requires that the perception of
discounted values, generated by every possible choice at every Ji that is a component
of an s ∈ R equals the expected discounted value of returns generated by that choice
from that Ji; where expectations are taken using the empirical distribution of outcomes
from that Ji (empirical distributions are denoted by a superscript E). Formally for
every b ∈ B ∪∅, W ∗(b|Ji) , the equilibrium evaluations satisfy

W ∗(b|Ji) = πE(b|Ji) +β
∑

ε,η,J−i,Fi

V (ω′, ξ′, Fi)µ
E(ξ′|ξ, Ji, w, b, J−i)µE(J−i|Ji)p(η)p(ε)p(Fi)

(4)
where

πE(b|Ji) =
∑
εi,η

[
µE(b|Ji)

(
min{ωi+θ+η, e+εi}−b

)
+[1−µE(b|Ji)] min{ωi, e+εi}

]
p(εi)p(η),
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µEw(b|Ji) is the empirical probability of winning if the agent bids b at Ji or

µEw(b|Ji) =
∑

J−i,F−i

Pr(i = w|b, b∗(J−i, F−i))µE(J−i|Ji)p(F−i),

and

ω′ =
(
{i = iw}max[0, ωi − (e+ εi) + θ + η] + {i 6= iw}max[0, ωi − (e+ εi)]

)
while

µE(J−i|Ji) ≡
µE(J−i, Ji)

µE(Ji)
,

µE(ξ′|ξ, Ji, b, J−i) ≡
µE(ξ′, ξ, Ji, b, J−i)

µE(ξ, Ji, b, J−i)
♠.

As noted in Fershtman and Pakes (2012) any Markov Perfect Bayes equilibrium will
satisfy the conditions of a REBE. In fact a REBE admits more equilibria than does
Markov Perfect Bayes. To understand the main reason why, it is helpful to distinguish
between two types of points in the recurrent class; interior points and boundary points.

At an interior point an agent will stay in the recurrent class with probability one
regardless of which of the feasible policies is chosen. At a boundary point the agent
will stay in the recurrent class with probability one if the equilibrium policy is chosen.
The agent may move outside of R if a feasible but non-equilibrium policy is chosen.
In a restricted experienced based equilibrium the perceived discounted value of all
feasible policies from an interior point equals the actual expected discounted value that
would arise from all agents playing their equilibrium policies. However at boundary
points only the perception of returns from the policies that lead to points in R with
probability one are required to equal the actual discounted values were all agents to
play their optimal strategies. Policies that lead to points outside of the recurrent class
are determined solely by perceptions and different perceptions on boundary points can
support different equilibria.

There are situations where it might be reasonable to impose restrictions on off the
equilibrium path behavior at boundary points. This would restrict the set of equilibria
further. We consider one such restriction in the next section. The reader who is not
interested in this refinement should be able to go directly to section 2.4.

2.3 Strengthening REBE: Boundary Consistency

If agents have prior knowledge or experiment with off the equilibrium path policies at
boundary points then we might expect off the equilibrium path behavior at boundary
points to satisfy some restrictions. This section provides one such restriction; that the
perceived value of off-equilibrium-path play from a boundary point equals the expected
discounted value of profits from that point when all agents use their equilibrium policies
(note that those policies are defined on all of S). We call this a boundary consistency
condition as it, together with condition C2, ensures that off the equilibrium path play
at boundary points would lead to discounted values that are less than those of optimal
play. Note that to impose this condition we need only calculate discounted values for
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profits along sample paths before they re-enter the recurrent class (if they do re-enter)
as we can use C3 above to evaluate the periods thereafter.

To formalize our condition we need to define the set of actions which could be taken
from points in the recurrent class that would generate outcomes which are not in the
recurrent class. To this end let supp[ps′(·|bi, b∗−i, s)] be the support of the probability
distribution over next period states, generated by actions (bi, b

∗
−i) and initial state

s = (Ji, J−i). The boundary set of couples (b, s), which we denote by B , are the set
of action-state combinations such that if s = (Ji, J−i) ∈ R, action b is taken by i and
equilibrium actions are taken by the other agents, then a probability distribution for
s′ is generated which has a point in its support which is not in the recurrent class, or

B ≡ (5){
(b ∈ B ∪∅), (J, J−i) = s ∈ R) : ∃F−i s.t. supp[ps′(·|b, b∗(J−i, F−i), s)] ∩ (s′ /∈ R) 6= ∅

}
.

The additional condition that needs to be satisfied for the one-period deviation to
actually yield an outcome which is less than the value of optimal play is C4 below.
In this condition we use γ to index periods since the off-equilibrium-path policy is
played. Let F = (Fi, F−i). The probability distribution p(sγ |b, s, {Fτ}γτ=1) is derived
recursively, with p(s1|b, b∗, s) =

∑
F−i

p(s1|bi = b, b−i = b∗(J−i, F−i), s)p(F−i), and for
γ > 1, p(sγ |b, sγ−1) =

∑
F p(sγ |sγ−1, b∗, F )p(F ).

C4:Boundary Consistency. Let πi(b
∗, s, F ) ≡ π(b∗i (Ji, Fi), b

∗
−i(F−i, J−i), Fi, Ji)

and πi(b, b
∗
−i, s, F ) ≡ π(b, b∗−i(F−i, J−i), Fi, Ji). Then our condition is ∀(b, Ji) compo-

nent of (b, s) ∈ B and for every Fi,

W (b∗|Ii)− {b∗(Ji, Fi) 6= ∅}Fi ≥∑
J−i,F−i

[
πi(b, b

∗
−i, s, Fi))+

∞∑
γ=1

βγ
∑
sγ ,Fγ

πi(b
∗, Fγ , sγ)p(sγ |sγ−1, b∗, Fγ)p(Fγ)

]
p(F−i)µ

E(J−i|Ji). ♠

where p(sγ |sγ−1, b∗, Fγ) is the probability of reaching state sγ at time γ given that
at time γ − 1 the state is sγ−1, participation fees are Fγ and the players play the
equilibrium strategies b∗.

Definition. We call an equilibrium which satisfies C1 to C4 a “Boundary Consis-
tent” REBE.

Notice that if for any sample path (i.e. any {sγ}∞γ=1), we define γR = minγ{γ : (sγ) ∈
R}, we can replace

∞∑
γ=γR

βγ
∑
sγ ,Fi

πi(b
∗, Fi, sγ)p(sγ |sγ−1, b∗, F )p(Fi)

in C4 with βγR
∑

Fi
V (sγR , Fi)p(Fi). We provide a formal test for the existence of

boundary consistent policies below. The fact that we can replace the infinite sum in
C4 with βγR

∑
Fi
V (sγR , Fi)p(Fi) eases the burden of computing of the test.
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2.4 Information sharing

We study the role of information sharing between firms participating in a sequence of
procurement auctions. In our benchmark case information is shared every T periods.
Between these periods firms do not observe the evolution of their competitors’ states;
however they do observe the public information which may help in predicting their
competitors’ behavior. We then compare our baseline model to two models that allow
for information exchange at more frequent intervals. The only difference among them
is the extent of information sharing as we do not allow for any additional mechanism
which facilitates coordination among firms. We also assume that when information is
exchanged firms reveal their true state.16

2.4.1 Information Exchange (IE)

In the first information sharing model there is mandatory information exchange every
period.17 We denote this model as IE.

2.4.2 Voluntary Information Exchange (VIE)

In the second information sharing model, we adjust the baseline model such that in
the period in which there is a forced information exchange firms also make a decision
on whether to share information in every period for the next T − 1 periods hence. If
one of the firms does not wish to share information, there is no voluntary information
sharing over the next T − 1 periods, and in the T th period firms’ chose whether they
wish to share information in the subsequent T periods. We call this model the VIE
model and describe it in more detail now.

We have a period index τ = 0, 1, . . . T, which designates the time from the period
of mandatory information exchange. At τ = 0 each firm also needs to decide if it
wishes to be part of an information exchange scheme. The decision of whether to share
information, R̃i ∈ {0, 1}, is made simultaneously with the participation and bidding
decision. R̃i = 1 denotes that firm i wishes to share information. Information is
actually exchanged, denoted by R = 1, only when R̃i = R̃−i = 1.

The timing of the game is adjusted so that the sequence described in section 2
changes as follows. If τ = 0, step (4) is replaced with

• “Each firm decides whether to participate in the auction. Participation is costly,
it requires an expenditure of Fi,t (a draw from the uniform distribution). If they
decide to participate they simultaneously submit their bids and decide whether
to reveal information over the next T periods. If both firms agree to reveal infor-
mation, there is information exchange over the next T periods and the voluntary
information exchange state R is set to 1. R is 0 otherwise. At the time of bidding,
participation decisions of rival firms are not observable.”

For τ > 0 we replace step (5) with

16Truthful revelation may require careful design of the incentives surrounding the agreement. For an
exploration of this in the context of explicit cartels in auction markets see (for example) Graham and
Marshall (1987), McAfee and McMillian (1992) and Mailath and Zemsky (1991).

17Formally we compute the model already described with the constraint that T = 1.
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• “Information exchange occurs at this point. If R = 1, ωi,t of all the firms is
revealed. This is in addition to the new public information (i.e. who won the
auction). If R = 0, the new public information revealed in the period is the same
as in the baseline model that is ξnt = [iwt , b

∗
t , pt] .”

In the V IE game the agents’ information set is different than in the B game in that
the public information also includes the most recent information sharing indicator, or
R ∈ {0, 1}.

The information exchange decision: At periods when τ = 0 firms need to
decide if they wish to exchange information in the next T periods. In those periods we
let R̃ ∈ [0, 1] indicate the decision over whether to exchange information (R̃ = 1) or
not (R̃ = 0) and define

Ṽ (Ji, Fi, R̃) = max
{

max
b∈B

(W (b, R̃|Ji)− Fi),W (∅, R̃|Ji)
}

where W (b, R̃ = 1|Ji) (W (b, R̃ = 0|Ji)) is the firm’s perceptions of the expected dis-
counted value of current and future cash flows, given the choice of bid and the choice
to reveal information in the next T periods, conditional on its information set.

The actual exchange state, our R, has R = 1 if and only if R̃i = R̃−i = 1. When
τ = 0, W (b, R̃ = 0, Ji) is analogous to W (b, Ji) in equation (3). When τ = 0 and R̃ = 1
there is a probability of moving into different R states that depends on the perceptions
of whether the competitor will chose to reveal. We let p(R = 1|Ji, R̃ = 1) be the firm’s
perception of that probability given R̃i = 1 and Ji. We use this perception combined
with equation (3) to form W (b, R̃i = 1|Ji). For τ > 0 the dynamics are similar to the
B case when R = 0, and are similar to the dynamics of the IE case when R = 1.

Definition of a REBE for the VIE case: The definition of a REBE for the
VIE case is analogous to that for the Baseline and IE cases but with the differences
we now consider. In the VIE in periods with τ > 0 the public information ξ includes
the outcome of the last voluntary information exchange, i.e. R ∈ {0, 1}. At τ = 0 the
optimal policies are given by

R̃∗(Ji, Fi) = arg max
R̃∈{0,1}

[
W (b∗(Ji), R̃|Ji)− {b∗(Ji) 6= ∅}Fi

]
,

b∗(Ji, Fi) = arg max
b∈{B∪∅}

[
W (b, R̃∗(Ji)|Ji)− {b 6= ∅}Fi

]
Finally since the agent needs a perception of the probability that R = 1 when he
evaluates the returns from R̃ = 1, there is a an additional consistency requirement that
the perception of this probability is, in equilibrium, equal to its empirical probability,
or

µE(R = 1|Ji, R̃ = 1) ≡ µE(R = 1, Ji, R̃ = 1)

µE(Ji, R̃ = 1)
.

Before going to our results we explain the computational algorithm we used to
obtain them. A reader who is not interested in the computational algorithm should be
able to go straight to section 4.
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3 Computation, relationship to learning, and

testing.

This section provides a reinforcement learning algorithm that computes a REBE for
our baseline model. We then provide a test for boundary consistency of a computed
REBE.

The algorithm models players as having perceptions on the value that is likely to
result from the different actions available to them at each state. The players choose
the actions that is optimal given those perceptions and the realized participation fees.
The realizations of random variables whose distributions are determined by the chosen
actions and the current state lead to a current profit and a new state. Players use this
profit, together with their perceptions of the continuation values they assign to the
new state, to update their perceptions of the values of the starting state. They then
proceed to choose an optimal policy for the new state which maximizes the perception
of the value from that state. This process continues iteratively.

As is explained in Fershtman and Pakes (2012) the reinforcement learning algorithm
described above is an algorithm that agents could actually use to learn the values
associated with various actions. If the game is a capital accumulation game, i.e. a
game where the transition probabilities for an agent’s state depend only on the given
agent’s policies, then the agent would learn the distribution of future states conditional
on all of its possible action. This is not necessarily the case when the game is not a
capital accumulation game, such as the sequence of procurement auctions we consider
here. The reason is that in a general game an agent might never know what the
evolution of its state would have been if it played an action off the equilibrium path
even if that action, had it been played, would keep the agent in the recurrent class
with probability one. For example in the auction game we consider here, an agent that
wins the auction at an optimal bid, will not learn from repeated equilibrium play what
would have happened if it bid a lower value (since in this auction game agents do not
observe non-winning bids of competitors).

We could perturb the algorithm to maintain the analogy with learning by forcing
agents to experiment with different policies at each state (as in Fudenberg and Levine
(1998)). This would, however, increase the complexity of the algorithm. A less com-
putationally burdensome way of proceeding to compute a REBE is to use knowledge
that the computer has in its memory but the agent does not have to update the values
associated with all policies (even those the agent does not take). Indeed from a com-
putational point of view the fact that we can compute an equilibrium for a non-capital
accumulation game without explicitly calculating the impact of one firm’s policies on
the evolution of its competitors’ states is an advantage of our algorithm relative to
algorithms which require explicit computation of all continuation values (see, for e.g.,
Besanko et al. (2014)).

We begin this section by outlining the computational algorithm for an arbitrary set
of initial conditions and providing a test of whether the output of the algorithm consti-
tutes a REBE. We then discuss how one can test whether the output of the algorithm
is consistent with the stronger notion of equilibrium that ensures that feasible, though
non-optimal, actions at the boundary points are indeed non-optimal.
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3.1 The Algorithm

The algorithm consists of an iterative procedure and subroutines for calculating initial
values and profits. We begin with the iterative procedure. Each iteration, indexed
by k, starts with a location that is a state of the game (the information sets of the
players) Lk = [Jk1 , ..., J

k
n ], and has objects in memory, Mk = {Mk(J) : J ∈ s ∈ S}.

Each iteration updates both the location and the memory. The rule for when to stop
the iterations consists of a test of whether the equilibrium conditions defined in the last
section are satisfied. We begin with the basic algorithm and then move on to testing.
A more detailed discussion of increasing the efficiency of the algorithm is provided in
the results section.

Memory: The elements of Mk(J) specify the objects in memory at iteration k for
information set J , and hence the memory requirements of the algorithm. Often there
will be more than one way to structure the memory with different ways having different
advantages. Here we focus on a simple structure that will always be available (though
not necessarily always efficient; see Fershtman and Pakes, 2012).

Mk(J) contains a counter, hk(J), which keeps track of the number of times we have
visited J prior to iteration k. If hk(J) > 0 it also contains

{W k(b|J)}b∈B∪∅.

If hk(J) = 0 there is nothing in memory at location J . When we need to evaluate
policies at a J at which hk(J) = 0 we have an initiation procedure which sets

{W k(b|J)}b∈B∪∅ = {W 0(b|J)}b∈B∪∅.

The choice of initial values will be discussed below.

Updating Lk: We find the values in memory associated with different b for each
agent at location Lk (or use the initiation procedure if needed), take a random draw
on Fi, and determine the optimal bid as

b∗(Jki , Fi) ≡ argmaxb∈B∪∅
[
W k(b|Jki )− {b 6= ∅}Fi

]
.

These bids determine which, if any, player wins the auction. Let bk ≡Maxi{b∗(Jki , Fi)}
be the highest bid at iteration k. If bk 6= ∅ there is an auction. We assume that if
there is an auction and more than one firm bids bk there is a lottery that determines
the winning bid.

The bk, the identity of the winner (ikw), and the participation decisions of all agents
(the vector pk) enable us to update the public information sets as

ξk+1 = {τk = 0}
(
ωk, τk+1 = 1, ikw

)
+ {τk 6= 0}

(
ξk(τk + 1), pk, ikw, b

k
w

)
,

where ξk(τk + 1) is notation for ξk with τ changed from τk to τk + 1. That is if we
are in a full information exchange period (if τk = 0) we reveal all information about
ω, delete the variables in ξk (as the revelation of ω makes them irrelevant), and add
the identity of the winning bidder. If τk 6= 0 we simply add the newly generated
information (pk, ikw, b

k
w) to the old information set and increase its τ by one.
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After bids are submitted and information is revealed but before the next auction
occurs, the firm that wins the auction gathers its new timber and all agents sell what
they can sell to the market. The random draws from the harvest (η) and from the
market sale (εi for each i) are realized and each agent’s stock of timber is augmented
as

ωk+1
i = max{0, ωki − (e+ εi) + {i = iw} (θ + η)}.

Thus the information prior to the next auction is given by

Jk+1
i = {ξk+1, ωk+1

i }, and Lk+1 = {Jk+1
1 , . . . , Jk+1

n },

where it is understood that ωki is omitted from firm’s Jk+1
i .

Updating The Values in Memory: The algorithm uses the information gener-
ated by the random draws that lead to the new location to update agents’ perceptions
of the values associated with the different policies. We only update objects in memory
associated with the location Lk, but we update each component of {W k(b|Jki )}b∈B∪∅
for all i. That is we update the continuation values for the policies not taken as well
as for those taken. The update for each W k(b|Jki ) assumes that the profits and the
continuation state that would have accrued to the agent had it chosen that b are those
that would have been generated by the competitor’s chosen policy, the current state,
and random draws from the primitive processes.

The update of the expected value from pursuing strategy b at state Jki , i.e. W k(b|Jki ),
is obtained by assuming that the “realized” value that would have been obtained from
playing that b was one draw from the expected value of choosing strategy b at Jki . The
“realized” value is evaluated as the profits it would have earned had it played “b” plus
its current perception of the discounted continuation value from the state that it would
have moved to. More formally let Jk+1

i (b, bk−i, ·) be the updated information set were
we to follow the updating procedure defined above after substituting b for bki in those
formula. This generates ξk+1(b, bk−i, ·) and ωk+1

i (b, bk−i, ·). Then the perceptions of the
value for taking action b at state Jki are updated as

W k+1(b|Jki ) =
hk(Jki )

hk(Jki ) + 1
W k(b|Jki )

+
1

hk(Jki ) + 1

[
π
(
ωki (b, bk−i, ·), ξk(b, bk−i, ·)

)
−b{i = iw}+β

∑
F ′

V
(
ωk+1
i (b, bk−i, ·), ξk+1(b, bk−i, ·), F ′)

)
p(F ′)

]
.

This updating procedure sets the current perception of the value of taking action b
at state J ik equal to a simple average of what the perception of taking action b would
have been had the agent taken that action every time in the past that it had reached J ik.
Though this averaging procedure does satisfy the Robbins and Monroe (1951) criteria
for convergence of a stochastic integral, it is unlikely to be efficient. This because the
earlier values are associated with less precise evaluations. We come back to discussing
ways of increasing computational efficiency in the results section, and now turn to the
testing procedure.

16



3.2 Testing Procedures.

Appendix A provide a detailed explanation of how to test whether the output of the
algorithm satisfies the conditions of a REBE. It is analogous to the test described in
Fershtman and Pakes (2012), so in the text we suffice with a brief overview of how to
construct the test statistic. We then consider testing for boundary consistency. This
concept is new to this paper, and the test has elements which differ from the test used
for REBE as it requires testing for the validity of moment inequalities. Accordingly
we go over the test for boundary consistency in more detail.

3.2.1 Testing for a REBE.

We stop the algorithm at a particular iteration and fix the values for that iteration.(
{W (b|Ji)}b∈B,W (∅|Ji)}

)
∀Ji at

(
{W ∗(b|Ji)}b∈B,W ∗(∅|Ji)}

)
,

The test is designed to check whether these values, together with the policies and the
recurrent class that they generate, satisfy conditions C1 to C3 above.

The test is based on simulating a sample path with the optimal policies generated

by
(
{W ∗(b|Ji)}b∈B,W ∗(∅|Ji)}

)
. Since the state space is finite, the simulated path

will wander into a recurrent class after a finite number of iterations, and stay within
that class thereafter. Every point within that class will be visited repeatedly. We keep
a separate memory for each point visited in the test’s simulation run.

The first time a particular point is visited we record the simulated continuation
value resulting from taking every possible action at that point. I.e. the profits plus the
discounted continuation value (evaluated by {W ∗(·|·)}) generated by; their action, the
policy chosen by their competitors and simulated random draws on the primitives.18

We also record the square of this continuation value and initiate a counter for the
amount of times this point was visited in the simulation run. Recall that we visit
each point in the recurrent class repeatedly. At each subsequent time a given point
is visited we again calculate a simulated continuation value for each possible policy
and then form an average of the simulated continuation values from each time the
point was visited for all policies at the point. A similar averaging is used for the
continuation value squared. When the simulation run is stopped the memory for each
point visited consists of the average of past simulated continuation values from that
point, the average of the continuation values squared, and the number of times the
point has been visited in the test run.

The squared difference between W ∗(b|Ji) and the estimated continuation value for
playing policy b at Ji is the mean square error of our estimate of W ∗(b|Ji). It can
be additively decomposed in the standard way into the bias squared of our estimate
and the variance of our estimate. The variance is unbiasedly estimated by the average
of the squared value minus the estimate squared. So by differencing the mean square
error from the estimate of the variance we are able to get an unbiased estimate of
the bias in our estimator for W ∗(b|Ji). Our test statistic is a weighted average of the
percentage bias (squared) in our estimates of W ∗(b|Ji). We weight the different b at a

18Since the stage game is simultaneous move, we can evaluate a counterfactual choice of a given agent’s
policy by substituting it, and the optimal policies of competitors, into this calculation.
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given Ji equally, and the sum over b at different Ji by the number of times that Ji was
visited in the simulation run.

More formally the test is an L2(PR(ns)) norm of the bias in the sum of simulated
continuation values as estimates for W ∗, where PR(ns) refers to the simulated estimate
of the recurrent class generated by W ∗. We accept the test when the test statistic
is less than .001; heuristically when our R2 is above .999. For more details see the
Appendix.

3.2.2 Testing for Boundary Consistency or for C4.

We begin with a verbal explanation of the test for a given {W (b|Ji)}b,Ji . Initially we
run a five million iteration simulation run from the last point visited in the algorithm.
We call the points visited during that run as the points in the recurrent class, and
tabulate the fraction of times each of those points was visited during this simulation
run, say {h(Ji)}Ji .

We then start new simulation runs from every point visited in this simulation run
for every possible policy from that point. This is analogous to the simulation procedure
used in the test for a REBE, except that in the boundary consistency test we have to
do it for every possible policy. We continue each of the simulation runs for every
(b, Ji) until the run enters a point in our estimate of the recurrent class. We keep
track of the discounted profits that the firm earns from the simulation run until the
simulation enters the recurrent class and this is added to the discounted proposed
equilibrium continuation value from the entry point to the recurrent class. Under the
null of a boundary consistent REBE, the result is an unbiased estimate of the expected
discounted value from taking the policy b at Ji. This is tabulated and averaged with the
other simulated discounted values obtained from the given (b, Ji). We then determine
which of the (b, Ji) are boundary couples by looking to see if any of the simulated runs
starting at Ji with policy b had a simulation run which did not enter the recurrent class
immediately. Finally we introduce a test of C4 and apply it to the boundary couples.

We now provide a more formal description of the testing procedure we run after
determining our estimate of the recurrent class. At each point, say Ji, chose every
b ∈ B ∪ ∅ and, using the policies generated by {W (·|·)}, start R simulation runs.
Index the runs from each (Ji, b) couple by r and let the sequence of states visited

during the rth simulation run be {Ji,γr}
γ∗r
γr=1, where γ∗r is the period in the simulation

run where the simulation enters the recurrent class (or some sufficiently large number,
which we take as 100).

Our estimate of the discounted value of net cash flows from run r for the couple
(b, Ji) is

Ŵr(b|Ji) ≡
γ∗r−1∑
γr=0

βγr

(
π
(
b(Ji,γr , Fi,γr), b(J−i,γr , F−i,γr), ωi,γr , εi,γr , ηγr

))

−
γ∗r−1∑
γr=1

βγr{b(Ji,γr , Fi,γr) 6= ∅}Fi,γr + βγ
∗
rW (b∗|Ji,γ∗r ),

where it is understood that b(Ji,1, Fi,1) = b or the policy we are evaluating. We keep
in memory the average of the Ŵr(b|Ji), the average of Ŵr(b|Ji)2 and the maximum of
γ∗r from the R simulation runs from each (b, Ji).
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Let χ(b, Ji) = 1 whenever maxr γ
∗
r (b, Ji) 6= 1 , where it is understood that γ∗r (b, Ji)

is the γ∗ associated with a particular (b, Ji). Then

B̂ = {(b, Ji) : χ(b, Ji) = 1}

is our estimate of the set of boundary couples. For each of these couples we have a

sample mean W
R

(b|Ji) which is an unbiased estimate of the population mean from R
sample paths (in our case R = 20), and we use the average of the sum of squares of

Ŵr(b|Ji) and this sample mean to calculate an unbiased estimate of V ar[W
R

(b|Ji)].
We now use this information to form a test. Since we are testing inequalities, i.e.

that the boundary point policies lead to discounted values of future net cash flows
which are less than the optimal policy at the Ji associated with the boundary point,
we will have to use a test statistic which is not pivotal, i.e. whose distribution does not
have a standard form (like the chi-square or normal). We define the statistic below and
then explain how we can construct its distribution under the null that our conditions
are satisfied. We accept the test if the observed value of the test statistic is less than
the 95th quantile of the distribution we construct.

The observed test statistic for boundary consistency for the points in
B̂: Let B̂(Ji) = {b : (b, Ji) ∈ B̂} ⊂ B ∪∅ and #B̂(Ji) be the number of elements in
B̂(Ji). Also let

T (Ji) =
1

#B̂(Ji)

∑
b∈B̂(Ji)

( [W
R

(b|Ji)−W (b∗|Ji)]+
W (b∗(Ji))

)
,

where [W
R

(b|Ji)−W (b∗|Ji)]+ = max[W
R

(b|Ji)−W (b∗|Ji), 0].
Let JB̂ be the set of Ji for which there is an element in B̂. Recall that h(Ji) is

the number of visits to the point Ji in the initial simulation run and calculate for each
Ji ∈ JB̂

q(Ji) =
h(Ji)∑

Ji∈JB̂
h(Ji)

.

Our test statistic is
T (B̂) =

∑
Ji∈JB̂

q(Ji)T (Ji).

The simulated distribution of the test statistic under a conservative
null: We now simulate the distribution of, T (B̂), under the null that W (b|Ji) =
W (b∗|Ji) for each (b, Ji) ∈ B, thereby insuring the size of the test.19 For each (b, Ji) ∈
B̂ take ns independent random draws from a normal with mean zero and variance

V ar[W
R

(b|Ji)], and call them, z(b, Ji)1, . . . z(b, Ji)ns (we set ns = 50). For each draw,
indexed by r = 1, . . . , ns calculate

T̃ (Ji)r =
1

#B(Ji)

∑
b∈B̂(Ji)

( [z(b, Ji)r]+
W (b∗(Ji))

)
,

19The test used here is often referred to as the least favorable test statistic in the econometric literature;
see for example Romano, Shaikh and Wolf (2014).
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and
T̃ (B̂)r =

∑
Ji∈JB̂

q(Ji)T̃ (Ji)r

Let T̃ (B̂).95ns be the 95th percentile of the distribution of T̃ (B̂)r. Then we accept the
test of

H0 : Boundary Consistency

if and only if
T̃ (B).95ns > T (B). ♠

4 Numerical analysis

A parameterized version of each of the baseline (B), information exchange (IE) and
voluntary information exchange (VIE) models is computed, using the computational
algorithm described above. The parameterization and the implementation of the algo-
rithm are discussed below, together with a description of the resulting computational
burden. An equilibrium is computed in each of the three models. These equilibria are
described in section 4.3, together with a discussion of the economic content of these
numerical results.

4.1 Parameter values

The parameter values that are used in the numerical analysis are given in table 1,
below. In each model, there are two firms and four possible bids. This structure is
adopted to enable us to compute an assortment of models in reasonable time (com-
putational burdens are discussed in the next subsection). Similarly, the time between
forced revelation periods in the baseline model is 4 periods, a choice arrived at through
balancing the desire to have meaningful private information evolving over time with
the need to keep the state space at a manageable scale. Participation costs are assumed
to be uniformly distributed U [0, 1]. To give some sense of scale, this means that the
participation costs are between 0 and 50%, and on average 25%, of the mean revenue
generated by a harvested lot of timber20.

4.2 Computational burden and updating procedure

A REBE is computed using the algorithm provided in section 3.1. Recall that there
may be many equilibria that satisfy our equilibrium conditions. The choice of initial
conditions for continuation values (our {W 0(·}) is one determinant of which equilibria
the algorithm will compute. If the initial conditions are higher than possible equilib-
rium values then all policies are likely to be explored, and, as a result, any equilibrium
the algorithm converges to is likely to be boundary consistent. The cost of choosing
high initial conditions is that they are likely to cause the algorithm to require many
iterations before it converges to equilibrium values.

20Two points on this. First recall that harvesting and production costs are normalized to zero. Second we
have also computed a model with participation cost that distribute U [0, .5] and the qualitative results are
unchanged.
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Table 1: Parameter specifications

B IE V IE
Parameters:

Periods between ω revelation T 4 1 {1,4}

Common Parameters:

Distribution of fixed cost of participation Fi U[0,1]
Discount factor β 0.9

Mean timber in a lot θ 3.5
Disturbance around θ η {-0.5,0.5}
Probability on η realizations {0.5,0.5}

Mean harvest capacity e 2
Disturbance around e ε {-1,0,1}
Probability on ε realizations {0.33,0.33,0.33}

Bidding grid {0.5,1,1.5,2}
Number of firms/bidders 2
Retail price of a unit of timber 1

We incurred that cost and used as initial conditions

W 0(b|Ji) = e

(
1− F + 0.5

θ + 1

)
1

1− β
+ ωi

F + 0.5

θ + 1

for all (b, Ji) ∈ (B,J ).21 To see why we chose these initial values, note that e/(1− β)
is the discounted value of being able to sell the mean harvest forever and e/(θ + 1) is
smaller than the periodicity that the firm would have to win the auction in order to
have the timber needed to sell e units in every period. So (F + .5)e/[(θ + 1)(1 − β)]
is less than the cost of bidding in enough periods to be able to sell e units in every
period if all the auctions that the firm bid on were won and the winning bid was the
lowest bid possible. Finally ω(F + .5)/(θ + 1) adds back in the cost of the timber the
firm has already stored.

Table 2 provides statistics that summarize different aspects of the computational
burden we incurred in computing the equilibria. Partly as a result of our choice of
initial conditions, the number of states visited (and hence explored) in both the B and
the V IE algorithms was large; 7.5 and 7.9 million respectively. Though the recurrent
classes were (less than) an order of magnitude smaller than this (less than 330,000),
there was a significant computational burden in finding them. Computation of the IE
equilibrium was much less difficult; the number of states visited was only 2,724 and the
cardinality of the recurrent class was 2089 reflecting the fact that the IE model does
not require the continuation values associated with every possible different four period
history after the period of revelation.

21F is the average value of Fi and is 0.5 under our parametrization.
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To lessen the computational burden for the B and VIE model we used the following
simple way of reducing the impact of the bias in the early iterations resulting from the
high initial conditions.

1. First the computational algorithm was run for 50 million iterations resetting the
counters for the states every 10, 000 iterations as follows;

h(Ji| iteration 10, 001) =

{
10 if h(Ji| iteration 10, 000) >= 10

h(Ji| iteration 10, 000) otherwise.

2. Then the algorithm is run for 5 million iterations without resetting the counter.

3. Next a run of 5 million iterations is used to form the test for the REBE (recall
that the test requires an R2 statistic to be greater than .999).

4. If the test is passed we stop the algorithm. Otherwise we repeat steps 1 to 3.

Steps 1 through 3 were repeated six times for B before the test was satisfied and
eight times for VIE. To obtain our results for the IE model we used a similar procedure
but with shorter runs; step one above is run for 10 million iterations and it took only
one round of our steps before convergence. The boundary consistency test was run, as
described in section 3.2.2, after we accepted the test for the Restricted EBE.22 All the
equilibria we describe here were boundary consistent, though we did find one that was
not which we do not report on. A summary of compute times is provided in the bottom
half of table 2 and the footnote to the table describes the program and computer used
for the runs.23

To insure that our estimate of the recurrent class was accurate, we extended the last
five million run by an additional five million and asked what fraction of the incremental
iterations visited points that had already been visited in the initial five million. For
the baseline, information exchange, and voluntary information exchange model the
fractions were 99.42%, 100%, and 98.9%% respectively24.

22The number of simulation runs used to determine whether a point in the recurrent class was a boundary
point was fifty, and the number of repetitions to form the averages used in the test of the boundary points
was twenty.

23The total computation times, including testing, for each of the models, were (in hours): B - 110, IE -
4.5, VIE - 185. There are many, likely quite helpful, ways one might improve on this, but optimizing the
algorithm is beyond the scope of this paper.

24Note also that the incremental points in the B and VIE cases are likely to be points that satisfy the
boundary consistency conditions.
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Table 2: Computational details

Size of recurrent class:
B IE V IE

325,843 2,081 328,692

Number of all states visited during computation:
B IE V IE

7,495,307 2,724 7,908,122

Computation times per 5 million iterations (in hours):
B IE V IE

1:38 1:06 1:56
Computation times for testing for a REBE (5 million iterations, in hours):

B IE V IE
1:43 1:09 2:00

Computation times for testing for boundary consistency (100,000 iterations, in hours):
B IE V IE

3:03 0:16 75:41

Notes: Computation was conducted in MATLAB version R2013a using (a Dell Precision T3610 desktop

with) a 3.7 GHz Intel Xeon processor and 16GB RAM on Windows 7 Professional. A round of computation

includes steps 1 and 2 of the computational procedure given above. It is 55 million iterations for B and V IE

and 15 million iterations for IE.

4.3 Computational Results

Table 3 shows a summary of average per-period performance metrics for each of the
B, IE, and V IE models and for a social planner (SP ) version of the model. The
social planner observes all private information of both firms and maximizes total rev-
enues minus participation fees.25 Were it not for the existence of a non-zero minimum
bid, which distorts participation somewhat, the planner’s allocation problem would be
equivalent to that of the ideal, perfectly coordinated, cartel; the planner maximizes
the discounted value of the sum of future net cash flows.

The average bid for B, IE and V IE, is 1.09, 0.94 and 1.04 respectively. The
ordering of bids across models is the same if we look at winning bids, or winning
bids conditional on the number of bidders. So if lower prices correspond to weakened
competition, the view that information sharing (of strategic data) is akin to collusion
has some support, in that both phenomena generate lower bids.

Increased participation is often associated with more competition which should,
in turn, lead to higher bids; and there is more participation in the IE than in the
B equilibrium. Part of the participation difference might be attributed to the more

25Specifically, the planner’s objective is to maximize revenues minus participation fees. That is, the planner
views the bid payment as a transfer between players while participation payments represent real costs to
the society. As in the baseline case, each firm draws a stochastic i.i.d. participation cost from Fi ∼ U [0, 1]
in each period. After observing the realization of the participation costs, the planner chooses which firm to
assign the lot to or chooses not to assign the lot to any firm. In terms of the informational structure, we
assume that the planner has access to the Fi and ωi realizations of both firms.
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Table 3: Summary statistics, in per-period terms, by model

B IE V IE SP
Avg. bid 1.09 0.94 1.04 -
Avg. winning bid (revenue for the auctioneer) 1.11 0.98 1.07 -
Avg. winning bid with ≥ 1 firm participating 1.16 0.98 1.12 -
Avg. winning bid with 1 firm participating 1.06 0.67 0.99 -
Avg. winning bid with 2 firms participating 1.23 1.16 1.20 -
Avg. # of participants 1.52 1.63 1.52 1
Avg. # of participants with ≥ 1 firm participating 1.59 1.63 1.59 1
Avg. participation rate 0.76 0.81 0.76 0.50
% of periods with no participation 4.39 0.15 3.85 0.004
Avg. total revenue 3.35 3.49 3.37 3.50
Avg. profit 0.81 0.87 0.84 -
% of periods; lowest omega wins 66.37 60.80 65.32 85.96
Average total social surplus 2.73 2.72 2.74 3.10

Notes: Here, and in tables 4, 5, 6, and 7, the per-period profit is defined as π(ωi) − I{i=win}bi − {bi 6=
∅}Fi = min

{
ωi + I{i=win}(θ + η), e+ εi

}
− I{i=win}bi−{bi 6= ∅}Fi. Total revenue is defined as

∑
i π(ωi) =∑

i min
{
ωi + I{i=win}(θ + η), e+ εi

}
. Total social surplus is defined as

∑
i {π(ωi)− {bi 6= ∅}Fi}. Averages

are taken over periods. The statistics are computed based on a 5 million iteration simulation of each model.

detailed information structure in the IE equilibrium facilitating more coordinated bids,
as there are less periods in the IE equilibrium when neither firm bids (.015 vs .04
percent). However, the statement that more information leads to softer competition
seems to be clearly at odds with the relationship between bids and participation in the
periods with at least one bidder, as even in those periods there is more participation
in the IE than the B equilibrium (1.63 vs 1.59).

Of course what might be confusing differences in behavior in a model of a static
(or a repeated) game, might not be confusing in the context of a dynamic game.
In particular differing dynamic incentives will generate differences in the propensity
to hold different stocks of lumber. We expect participation and bidding to differ with
differences in those stocks, and the table’s comparisons between the IE and B outcomes
are comparing different weighted averages of the stock combinations. The probable role
of dynamics in explaining differences in the implications of the information environment
also comes out clearly when we compare Table 3 to Table 4. Table 3 indicates that
more information (the IE equilibrium) generates a higher discounted cash flow and
therefore higher average profits, but table 4 makes it clear that once we condition on
the stock of timber the B equilibrium generates higher profits almost always.26

Before leaving table 3 we note that all three models deliver (essentially) the same
social surplus (albeit with IE being lowest by 0.01). However the maximal social
surplus from the market equilibria, 2.73, is much lower than the social surplus attained
by the planner (3.10). The participation numbers indicate why the planner does so
much better. The planner only ever lets one firm enter the auction, thus saving on the
cost F (the planner also benefits from being able to better coordinate the path of the ω-
tuple). In the IE equilibrium the firms generate almost the same revenue (equivalently,

26The only exception are states which are visited only .15% (1.12%) of the periods in the B (IE) equilibrium.
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output) per period as does the planner, but requires much greater participation to do
so, thus generating a lower social surplus. By contrast, firms in B are less effective
at revenue generation (their stocks are not always high enough to satisfy the demand
that faces them), but generate less wasteful participation.

Table 4: Probability Distribution by ω-tuple for B, IE and SP

Prob. Dist. (%) Profit
(ωi, ω−i) B IE SP B IE

(≤ 4,≤ 4) 65.51 32.59 90.12 0.68 0.52
(≤ 4, 5− 7) 12.61 19.09 4.52 0.57 0.58
(≤ 4,≥ 8) 4.05 10.55 0.28 0.60 0.59

(5− 7,≤ 4) 12.61 19.09 4.52 1.51 1.26
(5− 7, 5− 7) 0.88 5.72 0.22 1.49 1.46
(5− 7,≥ 8) 0.14 1.12 0.02 1.49 1.13

(≥ 8,≤ 4) 4.05 10.55 0.28 1.62 1.58
(≥ 8, 5− 7) 0.14 1.12 0.02 1.66 1.87
(≥ 8,≥ 8) 0.01 0.17 0.00 1.72 1.56

Notes: This table shows the probability of intervals of ω-tuples for B, IE and SP . Here, and in tables 5,

6, and 7,the per-period profit is a probability weighted average, over the states underlying each ω-tuple.

To explain these phenomena we have to consider the relationship between the dif-
ferent information structures and dynamic incentives. We begin with the differences
between the IE and B equilibria (the discussion of VIE is delayed until section 4.3.2).
Table 4 divides the state space by ω-tuples, and shows the probability distribution over
these ω-tuples for each of B and IE as well as the average per-period profits earned by
the firms with ω’s in the tuple. The distribution for SP is also provided for comparison.

Both B and IE are dynamic games in which the control that the firm uses to change
its stock of timber is its bid. Hence, to understand how differences in information sets
shape the different paths taken through the state space, an examination of bidding is
required. The salient feature of the data in table 4 that the bids must explain is how
the IE information structure generates bids that keep the firms in higher ω tuples. The
lower ω-tuples, the tuples in which both firms have ω ≤ 4, are the least profitable tuples
in either equilibrium; indeed the maximal profits for a firm with ω ≤ 4 is less than half
the minimal profits with ω ≥ 4. What is evident from table 4 is that the additional
information available to firms in the IE equilibrium enables them to stay away from
states with ω ≤ 4 with greater propensity than the firms in the B equilibrium are able
to. The fraction of periods with both firms with ω ≤ 4 is 65.5% in B compared to
32.6% is IE, while the fraction of states with at least one firm with ω ≤ 4 is just over
62% for IE compared to just over 82% for B.

In contrast the social planner spends more time in the (≤ 4,≤ 4)-tuples than either
firms in B or IE, thereby generating a smaller cost of holding the timber already
procured. So IE firms maintain ω stocks that are greater, and in that sense even less
efficient, than in the B equilibrium. Table 4 also reveals that firms in IE spend more
time in states that are asymmetric, in the sense of having one firm with a high ω and
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one with a low ω.

Table 5: Bids by ω-tuple for B and IE

Bids Profit
(ωi, ω−i) B IE B IE

∅ 0.5 1 1.5 2 ∅ 0.5 1 1.5 2
(≤ 4,≤ 4) 0.22 0.13 0.27 0.31 0.07 0.07 0.13 0.28 0.47 0.06 0.68 0.52
(≤ 4, 5− 7) 0.11 0.32 0.45 0.11 0.02 0.02 0.53 0.37 0.08 0.00 0.57 0.58
(≤ 4,≥ 8) 0.08 0.58 0.29 0.04 0.02 0.00 0.88 0.12 0.00 0.00 0.60 0.59

(5− 7,≤ 4) 0.43 0.18 0.34 0.04 0.01 0.33 0.10 0.52 0.05 0.00 1.51 1.26
(5− 7, 5− 7) 0.37 0.50 0.09 0.02 0.01 0.40 0.59 0.01 0.00 0.00 1.49 1.46
(5− 7,≥ 8) 0.39 0.53 0.06 0.01 0.01 0.11 0.89 0.00 0.00 0.00 1.49 1.13

(≥ 8,≤ 4) 0.51 0.25 0.22 0.02 0.00 0.60 0.14 0.26 0.00 0.00 1.62 1.58
(≥ 8, 5− 7) 0.53 0.39 0.06 0.01 0.00 0.84 0.16 0.00 0.00 0.00 1.66 1.87
(≥ 8,≥ 8) 0.61 0.36 0.03 0.00 0.00 0.47 0.53 0.00 0.00 0.00 1.72 1.56

Notes: This table shows bids by intervals of ω-tuples for B and IE. ∅ indicates non-participation.

Table 5 contains the probability distributions over bids that underlie the distribu-
tion over the ω -tuples examined in table 4 together with average profits in those states.
Grey shaded cells indicate bids that are more frequent in IE than in B. Notice first
that, when both firms’ have ω ≤ 4, bidding is more aggressive in the IE than in the
B equilibrium; there is both more participation in IE and a higher fraction of bids are
higher than the minimal bid in these states. This reinforces the impression that the
increased information created when moving from B to IE is not allowing the firms in
IE to better coordinate; more information actually intensifies competition when stocks
of timber are low. Relative to IE the firms in the B model are less certain about their
competitor’s states and this softens competition.

The opposite seems to be true when at least one of the firm’s has an ω greater than
eight, or both firms have an ω between five and seven. In these states participation in IE
is sometimes greater than in B but, conditional on bidding, the bids in IE are smaller.
The result is that the winning bid in IE is the minimal bid much more frequently. For
example, when both firms have an ω between five and seven the IE bidding patterns
are consistent with firms participating when their Fi draw is sufficiently low, and then
bidding the minimal amount. The result is that in virtually every case the winning bid
is the minimal bid. This essentially reduces the auction to a lottery. When both firms
have an ω between five and seven in the B equilibrium participation is somewhat lower,
but conditional on participating about a quarter of the bids are more than the minimal
bid. A similar comparison holds when both firms have an ω greater than eight. In the
(≥ 8, 5 − 7) -tuple and the (≥ 8,≤ 4) tuple the IE equilibrium has the high ω firm
typically sitting out the auction, deferring to the lower ω rival who most often wins
with the minimal bid. In contrast when the B equilibrium is at the tuple (≥ 8, 5− 7)
the high ω firm bids in 47 % of the time (compared to only 16% of the time in the
IE equilibrium,) and 15% of those bids are greater than the minimal bid (compared to
0% for the IE equilibrium).

So when at least one of the firms has an ω greater than eight, or both firms have an
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ω between five and seven, it seems that more information enables better co-ordination
of bids. The one couple of states in table 5 that we have not discussed is when one
firm has an ω less than or equal to four and the other has an ω between five and seven.
There is a sense in which this couple of states lies ”in-between” the low stock states
in which more information intensifies competition and the high stock states in which
more information facilitates coordination. In this state the high ω firm participates
more in the IE equilibrium (67% vs 57%), and 85% of the time that the high ω firm
participates in the IE equilibrium it bids more than the minimum bid (compared to
68% of the time in the B equilibrium). The low ω firm in the (≤ 4, 5− 7) participates
more in the IE equilibrium, but bids less aggressively than it does in the B equilibrium.
The fact that the high ω firm bids more aggressively in the IE equilibrium but the low
ω firm does not, explains part of the difference between the probabilities of different
states between the IE and B model provided in table 4, as it underlies the fact that
the IE model typically generates disproportionate number of states where at least one
firms has a high ω stock.

Tables 6 and 7 examine the differences in bids between the B and IE model in more
detail. Table 6 looks at bids in the low ω states and shows the rather dramatic increase
in aggressiveness that results from providing firms with the increased information in
the IE equilibrium. At state (0, 0) firms in IE participate 99% of the time (compared
to 88% in B) and when they participate 78% of the time they chose the maximal bid
(versus 28% in B). The differences between the bids in IE and B are similar in state
(1,1). Even when there is some asymmetry in the states, as long both states are low the
increased information in IE causes the firm with a higher ω to bid more aggressively in
IE than in B. For example at (2,0), the firm with ω = 2 participates 95% of the time
in IE (versus 72% of the time in B) and the IE firm bids 1.5 or more 91% of the time
(versus 64% of the time in B).

Table 6: Competition in low ω-tuples

.

Prob. Dist. (%) Bids Profit
(ωi, ω−i) B IE B IE B IE

∅ .5 1 1.5 2 ∅ .5 1 1.5 2
(0, 0) 3.17 .50 .12 .07 .12 .41 .28 .01 .00 .09 .12 .78 -.22 -.48
(0, 1) 3.70 .88 .12 .08 .13 .46 .20 .04 .00 .09 .44 .43 -.17 -.44
(0, 2) 4.91 1.48 .11 .09 .17 .49 .15 .05 .08 .05 .60 .23 -.09 -.31

(1, 0) 3.70 .88 .18 .06 .13 .49 .15 .01 .04 .00 .29 .66 .41 -.08
(1, 1) 2.36 .80 .18 .12 .23 .40 .07 .03 .09 .00 .74 .15 .46 .20

(2, 0) 4.91 1.48 .28 .07 .19 .41 .05 .05 .10 .00 .86 .00 1.01 .66

Notes: This table shows the probability of selected ω-tuples and bids by those ω-tuples for B and IE.

Table 7 focuses on bidding behavior when states are asymmetric. The firm with
the larger stock has an ω = 7 but the pattern is representative of bidding in states in
which its ω ∈ {5, 6, 7, 8, 9}. Relative to the B equilibrium the low ω firms in IE have a
higher propensity to bid and, when bidding, to bid the minimum bid. Moreover those
propensities increases as their state moves from 0 to 1 to 2. By contrast, at least for
the couples (7,0), (7,1), and (7,2), the high-ω rival either does not participate or tends
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to bid 1 (and so is likely to win if it does bid). As the low ω firm’s stock increases, the
high ω firm participates less. So the low ω firm is likely to win more often, and if it
does win, it wins with the minimal bid. This insures that both firms profits increase
as the low ω firm’s state increases.

In the IE equilibrium this pattern of play shifts as the low ω firm passes ω=4.
Then the high ω firm (if it bids) moves its bids toward the minimal bid, so that by
the time the state (7,7) is reached each firm either does not participate or bids the
minimal amount (in about equal proportions). The behavior in the B equilibrium in
these cases is quite different. Participation and bids conditional on participation are
higher, making the relative profitability of those states (relative to the low ω states)
less profitable in the B than in the IE equilibrium.

Table 7: Bidding and participation in asymmetric ω-tuples

Prob. Dist. (%) Bids Profit
(ωi, ω−i) B IE B IE B IE

∅ .5 1 1.5 2 ∅ .5 1 1.5 2
(0, 7) 1.49 2.36 .05 .23 .61 .09 .03 .01 .33 .62 .03 .00 .22 .02
(1, 7) .40 .83 .08 .50 .38 .03 .01 .00 .79 .21 .00 .00 .69 .64
(2, 7) .35 .89 .14 .64 0.18 0.02 0.01 0.00 1.00 0.00 0.00 0.00 1.06 1.07
(4, 7) 0.13 0.69 0.26 0.61 0.10 0.02 0.02 0.04 0.96 0.00 0.00 0.00 1.36 1.09

(7, 0) 1.49 2.36 0.46 0.10 0.41 0.03 0.01 0.26 0.00 0.74 0.00 0.00 1.55 1.17
(7, 1) 0.40 0.83 0.48 0.23 0.26 0.02 0.00 0.40 0.03 0.57 0.00 0.00 1.57 1.21
(7, 2) 0.35 0.89 0.48 0.29 0.21 0.02 0.00 0.50 0.11 0.39 0.00 0.00 1.57 1.39
(7, 4) 0.13 0.69 0.46 0.43 0.09 0.02 0.01 0.76 0.24 0.00 0.00 0.00 1.59 1.84
(7, 7) 0.02 0.26 0.45 0.47 0.06 0.01 0.00 0.47 0.53 0.00 0.00 0.00 1.61 1.49

Notes: This table shows the probability of selected ω-tuples and bids by those ω-tuples for B and IE.

Tables 6 and 7 are central to understanding how increasing a firm’s information
about its competitor changes the path of play. Providing more information about a
competitor increases competition at low ω states which reduces profits in those states.
In a static game a fall in profits that accompanies the increase in information would
decrease participation. However here, despite the fact that profits are lower, partic-
ipation is higher in the game with more information. This because firms respond to
the possibility of higher future profits if they increase their stock of timber, and an
increase in information at low ω states intensifies the competition over those future
profits. Consider two firms initially at low ω states. A firm that does win the initial
auctions proceeds to a higher ω state, and then participates less often in subsequent
auctions. Compared to the B equilibrium, firms in the IE equilibrium are better able to
asses when their competitor has a large stock. So a firm that loses the initial auctions
is more certain of the extent to which the winning firm’s stock increases and knows
that when the increase is large enough its competitor is less likely to participate in
the auction. Thus the firm with a low ω knows that it is likely to win subsequent
auctions with a minimal bid and bids accordingly. Though this certainly does not
dull the incentive to bid aggressively when both stocks are low, it does ameliorate the
consequences of initial losses and support an equilibrium where both firms are at high
ω (and hence highly profitable) states more often.
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More generally the reduction in asymmetric information, caused by moving from
B to IE, intensifies competition in low-ω-tuples (causing a reduction in profits in
those states) but mitigates competition in high ω states; and so colors competition
throughout the recurrent class.27 The result is an environment in which firms invest in
maintaining higher ω stocks, and thus spend more time in parts of the state-space in
which competition is less intense. Somewhat perversely this occurs precisely through
the intensification of competition caused by a reduction in asymmetric information in
those states (low-ω-tuples) in which competition was most vigorous to start with.

4.3.1 The Model with Static Incentives (i.e. β = 0).

Note that when we set β = 0 the firms still use the prior history as signals on the likely
current stock of timber held by their competitors. However they now bid to maximize
current profits with no interest in investing for future use. The striking implication
of the computational results in Table 8 is that when there is no incentive to invest in
the future, whether or not firms share information has little impact on their behavior.
Apparently the primary impact of the additional information in the IE equilibrium is
to enable the firms to plan for the future, and this, in turn, changes the equilibrium
distribution of states28.

Table 8: β = .9 versus β = 0.

β = 0.9 β = 0
B IE B IE

Avg. bid 1.09 0.94 0.61 0.59
Avg. winning bid (revenue for the auctioneer) 1.11 0.98 0.54 0.53
Avg. winning bid conditional on ≥ 1 firm participating 1.16 0.98 0.62 0.60
Avg. winning bid conditional on 1 firm participating 1.06 0.67 0.55 0.53
Avg. winning bid conditional on 2 firms participating 1.23 1.16 0.82 0.82
Avg. # of participants 1.52 1.63 1.10 1.10
Avg. # of participants conditional on ≥ one firm participating 1.59 1.63 1.25 1.25
Avg. participation rate 0.76 0.81 0.55 0.55
% of periods with no participation 4.39 0.15 11.98 11.65
Avg. total revenue 3.35 3.49 3.08 3.09
Avg. profit 0.81 0.87 1.03 1.04
% of periods in which a firm with the lowest omega wins 66.37 60.80 96.24 96.15
conditional on ≥ 1 firm participating
Average total social surplus 2.73 2.72 2.60 2.61

4.3.2 Voluntary information exchange (V IE)

In the V IE model firms can elect, every 4 periods, to share information. If both firms
elect to share information then the model switches, for the next four periods, from the
B to the IE setting. After the four periods they chose between B and IE again. If
one or both firms choose not to share, then firms spend the next four periods in the B
setting.

27Recall that the recurrent class are those states visited repeatedly in the course of equilibrium play.
28We have also computed for β ∈ [.25, .5, .8]. As we increase β the difference between the IE and B

equilibria in the rows of tables analogous to Table 8 grows.
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Table 9 indicates that despite the fact that average profits in IE are larger than
average profits in B, firms in V IE only choose to share information in 5% of the states
where that choice is made (though one of the two firms choses to share in 24% of
those states). As a result when we calculated the prior tables there was little difference
between B and V IE. This raises the question of why firms in V IE cannot reliably
coordinate on sharing information; after all it appears to be in their long term interest.

Table 9: Individual firm’s choices to reveal by ω-tuple

Prob. Dist. (%) Pr(∪iχi ≥ 1) Pr(Πiχi = 1 Profit
(ωi, ω−i) V IE V IE B IE

(≤ 4,≤ 4) 62.98 24.75 4.76 0.68 0.52
(≤ 4, 5− 7) 13.17 24.57 4.47 0.57 0.58
(≤ 4,≥ 8) 4.58 28.06 6.09 0.60 0.59

(5− 7,≤ 4) 13.17 21.38 4.47 1.51 1.26
(5− 7, 5− 7) 1.13 18.94 4.59 1.49 1.46
(5− 7,≥ 8) 0.19 24.38 9.73 1.49 1.13

(≥ 8,≤ 4) 4.58 23.39 6.09 1.62 1.58
(≥ 8, 5− 7) 0.19 24.60 9.73 1.66 1.87
(≥ 8,≥ 8) 0.02 38.14 20.34 1.72 1.56

Notes: χi ∈ {0, 1}, χi = 1 indicates that firm i chose to reveal, so ∪iχi ≥ 1 indicates that at least one firm

chose to reveal and Πiχi = 1 indicates both firms chose to reveal. Only periods in which firms decide on

information sharing (or periods with τ = 0) are used in the calculation.

Table 9 shows that the propensity to share information is substantial only when
both ω’s are greater than 4, and the highest is greater than 8. Since the default is
B, in VIE these states occur relatively rarely, hence the low frequency of choosing to
share information. Recall that profits are higher in the B equilibrium. As a result to
enjoy the benefit of switching to the IE equilibrium the firm has to forsake profits in
an intermediate period.

This tradeoff comes out clearly in the comparison presented in Table 10. It reports,
for IE, the average of EFi [V (Ji, Fi) |τ = 1] by the underlying state’s ωi , weighted by
the relative frequency with which a state is visited. It also reports the same expectation
for an alternate scenario, in which optimal policies from the B model are followed (from
the same initial state) for four periods, and then, for all subsequent states, IE-optimal
policies are followed. Comparing the two expected valuations indicates the value of
switching from no-information sharing directly to information sharing versus waiting
four periods and then shifting to information sharing. The last column reports the
frequency, in the simulated data, with which the value for IE was larger than the
calculation with four periods of waiting; i.e. the fraction of times when any losses in
the interim four periods of information exchange are worth less than any gains from
information sharing in subsequent periods.

Tables 9 and 10 show the difficulty that the collective of firms have in maintaining
information sharing, despite it’s long term benefits. This suggests the importance of
commitment devices in establishing an effective information sharing arrangement. In
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Table 10: EFi [V (Ji, Fi) |τ = 1] by ωi

ωi Number of states IE B for 4 periods, then IE Probability of
(A) (B) (A) ≥ (B)

0 146 6.22 6.34 22.92
1 120 6.89 7.01 32.57
2 131 7.72 7.79 36.47
3 136 8.54 8.58 29.87

4 127 9.35 9.30 63.57
5 120 10.10 10.02 44.79
6 113 10.87 10.70 75.12
7 94 11.60 11.37 87.34
8 87 12.27 11.98 90.58
9 75 12.86 12.52 94.66
10 63 13.40 13.02 99.93
11+ 186 14.25 13.88 99.53

Notes: This table shows, for IE, the average of EFi
[V (Ji, Fi) |τ = 1] by the underlying state’s ωi, weighted

by the relative frequency with which a state is visited during a 1 million iteration simulation of the B model.

It then replaces the first four periods of IE by B (and the IE continuation from the resulting end state) to

form the same computation for “B for 4 periods, then IE”. States are selected by taking all τ = 1 states

visited during a 1 million iteration simulation of the B model. The number of states is the count of distinct

states. The probability of (A) ≥ (B) is % of times with (A) ≥ (B) during a 1 million iteration simulation of

the B model.
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IE perfect commitment is externally imposed. In VIE, firms are able to commit for
only four periods at a time and this is sufficient to break down information sharing.

5 Conclusion

This paper illustrates how the Experience Based Equilibrium concept facilitates in-
vestigation of the dynamics of complex auction environments. It also extends this
equilibrium concept through a Boundary Consistency requirement which mitigates the
the problem of multiplicity that can be generated by the conditions of Experience Based
Equilibrium. Our example shows that allowing for the dynamics implicit in many auc-
tion environments is important in that it enables the emergence of equilibrium states
that can only be reached when firms are responding to dynamic incentives. It also
shows that the impact of information sharing can depend crucially on the extent of
dynamics and suggests that treating information sharing, even of strategically impor-
tant data, as a per se offense (in the case of U.S.) or as a restriction of competition by
object (in the case of the E.U.), needs to be weighed against the possibility of type 1
error, falsely rejecting the hypothesis that conduct is pro-competitive.
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6 Appendix A

6.1 Testing for REBE

In this appendix we discuss the testing for REBE and the boundary consistency for
the baseline case. Analogous procedures are used for the IE and VIE case.

Notation and Memory. Iterations of the test will be denoted by l (in contrast to
the k notations for iterations of the algorithm for computing policies). At each iteration
there will be two information sets, one for each firm, so sl ≡ (J1,l, J2,l). In storage we

have particular values of
(
{W (b|Ji)}b∈B,W (0|Ji)}

)
, say

(
{W ∗(b|Ji)}b∈B,W ∗(0|Ji)}

)
,

for all Ji with positive counters (h∗(Ji) > 0), and our goal is to determine whether
these values satisfy the conditions of a REBE.

At each point visited during the simulation run we draw an Fi for each firm and
calculate

V (Ji, Fi) = max{max
b

(W ∗(b|Ji)− Fi),W ∗(0|Ji)}.

The argmax of this equation for each firm will be denoted with a star. Together with
the random draws that determine the quantity of timber in the newly acquired lot
together with those determining the harvest, these policies generate the next state.
However since we are calculating a REBE we need to simulate the continuation values
for all possible policies, i.e. for b ∈ B ∪ ∅.

That is, at iteration l we calculate the simulated continuation values for firm i and
policy b as

SCV l(b|J li ) = πi(bi, b
∗,l
−i, ω

l
i, ε

l
i, η

l
i) + βV ∗

(
J l+1
i

(
J li , bi, b

∗,l
−i, ω

l
i, ε

l
i, η

l
i

)
, F l+1

i

)
.

We also calculate SCV l(b|J lI)2. We then update our memory for that point which
consists of; an average of the simulated continuation values, an average of the square
of the simulated values, and the counter for the number of times we have visitied that
point.

Say we stop the simulation routine at a particular l = l at that point we have in
memory an average of the estimated simulation value for each possible policy at each
point visited more than once

µl(b|Ji) ≡
∑l

l=1 SCV
l(b|Ji){Ji = J li}
hl(Ji)

,

and can calculate an unbiased estimate of the variance of the simulated continuation
values for each policy at every point

σ̂2
l
(b|Ji) ≡

∑l
l=1 SCV

l(b|Ji)2{Ji = J li}
hl(Ji)− 1

−
µl(b|Ji)

2hl(Ji)

hl(Ji)− 1
.

Omitting the index l for notational convenience and letting #B be the cardinality
of the set B plus one (for choosing not to enter), we note that the percentage means
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square error of our estimates at W ∗(Ji) or

MSE
( µ(Ji)

W ∗(Ji)

)
≡ 1

#B

∑
b∈B∪∅

(
µ(b|Ji)−W ∗(b|Ji)

W ∗(b|Ji)

)2

= Bias2
(µ(Ji|W ∗)

W ∗

)
+V ar

(µ(Ji)

W ∗

)
where if E(·) takes expectations over the simulated draws,

Bias2
(
µ(Ji)|W ∗

)
≡ 1

#B

∑
b∈B∪∅

(
E[µ(b|Ji)]−W ∗(b|Ji)

)2

and

V ar
(
µ(Ji)

)
≡ 1

#B

∑
b∈B∪∅

σ2(b|Ji) =
1

#B

∑
b∈B∪∅

(
E[µ(b|Ji)]− µ(b|Ji)

)2

.

Our test statistic, labelled Υ, converges to an L2(Pns|W ∗) norm in the percentage
bias of the our estimates of W ∗, where Pns is the empirical measure of the number
of times each Ji is visited in the simulation run (this will converge to L2(PR|W ∗),
the invariant measure of a recurrent class generated by W ∗). To obtain a consistent
estimate of Υ we note that

∑
Ji

(
1

#B

∑
b∈B∪∅

σ̂2
l
(b|Ji)

)
− V ar(Ji)

)
pns(Ji)→a.s. 0,

so that

Υ ≡
∑
Ji

(
MSE

(
µ(Ji)

)
−
( 1

#B

∑
b∈B∪∅

σ̂2
l
(b|Ji)

))
pns →a.s.

∑
Ji

Bias2
(
µ(Ji)|W ∗

)
pns(Ji).♠

We accept the test when Υ ≤ .001.
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6.2 Appendix B: NOT FOR PUBLICATION

Table 11: Probability Distribution and Actions by ω-tuple for B and IE

Prob. Dist. (%) Bids Profit Joint Profit
(ωi, ω−i) B IE B IE B IE B IE

0 0.5 1 1.5 2 0 0.5 1 1.5 2
(0, 0) 3.17 0.50 0.12 0.07 0.12 0.41 0.28 0.01 0.00 0.09 0.12 0.78 -0.22 -0.48 -0.43 -0.97
(0, 1) 3.70 0.88 0.12 0.08 0.13 0.46 0.20 0.04 0.00 0.09 0.44 0.43 -0.17 -0.44 0.24 -0.53
(0, 2) 4.91 1.48 0.11 0.09 0.17 0.49 0.15 0.05 0.08 0.05 0.60 0.23 -0.09 -0.31 0.92 0.35
(0, 3) 4.83 1.94 0.10 0.10 0.25 0.47 0.08 0.03 0.17 0.02 0.71 0.07 -0.02 -0.26 1.32 0.52
(0, 4) 3.83 2.27 0.08 0.13 0.39 0.38 0.03 0.02 0.19 0.17 0.62 0.00 0.04 -0.24 1.40 0.49
(0, 5) 3.02 2.47 0.07 0.15 0.53 0.24 0.02 0.02 0.20 0.38 0.40 0.00 0.14 -0.09 1.63 0.94
(0, 6) 2.19 2.48 0.06 0.18 0.61 0.13 0.02 0.02 0.19 0.61 0.18 0.00 0.19 -0.00 1.72 1.15
(0, 7) 1.49 2.36 0.05 0.23 0.61 0.09 0.03 0.01 0.33 0.62 0.03 0.00 0.22 0.02 1.76 1.19
(0, 8) 0.97 2.14 0.04 0.36 0.53 0.05 0.02 0.00 0.58 0.42 0.00 0.00 0.24 -0.01 1.78 1.13
(0, 9) 0.64 1.80 0.04 0.51 0.41 0.04 0.01 0.00 0.82 0.18 0.00 0.00 0.31 0.17 1.86 1.47
(0, 10) 0.41 1.29 0.04 0.64 0.27 0.04 0.01 0.00 1.00 0.00 0.00 0.00 0.38 0.69 1.99 2.44
(0, 11+) 0.53 1.21 0.03 0.78 0.12 0.05 0.02 0.00 1.00 0.00 0.00 0.00 0.50 0.81 2.22 2.67

(1, 0) 3.70 0.88 0.18 0.06 0.13 0.49 0.15 0.01 0.04 0.00 0.29 0.66 0.41 -0.08 0.24 -0.53
(1, 1) 2.36 0.80 0.18 0.12 0.23 0.40 0.07 0.03 0.09 0.00 0.74 0.15 0.46 0.20 0.93 0.39
(1, 2) 2.54 1.07 0.17 0.14 0.32 0.32 0.05 0.03 0.10 0.07 0.81 0.00 0.49 0.32 1.52 0.96
(1, 3) 2.09 1.16 0.15 0.16 0.43 0.23 0.02 0.02 0.13 0.33 0.53 0.00 0.55 0.32 1.89 1.19
(1, 4) 1.42 1.13 0.13 0.22 0.52 0.13 0.01 0.01 0.16 0.59 0.24 0.00 0.59 0.40 1.97 1.45
(1, 5) 0.98 1.08 0.11 0.29 0.51 0.08 0.01 0.00 0.28 0.72 0.00 0.00 0.62 0.52 2.10 1.65
(1, 6) 0.64 0.97 0.08 0.43 0.43 0.05 0.01 0.00 0.52 0.48 0.00 0.00 0.66 0.55 2.20 1.74
(1, 7) 0.40 0.83 0.08 0.50 0.38 0.03 0.01 0.00 0.79 0.21 0.00 0.00 0.69 0.64 2.26 1.85
(1, 8) 0.24 0.63 0.07 0.62 0.27 0.03 0.01 0.00 1.00 0.00 0.00 0.00 0.74 0.82 2.37 2.34
(1, 9) 0.14 0.40 0.08 0.68 0.19 0.03 0.02 0.00 1.00 0.00 0.00 0.00 0.75 0.89 2.40 2.63
(1, 10) 0.08 0.19 0.08 0.70 0.16 0.03 0.03 0.00 1.00 0.00 0.00 0.00 0.76 0.95 2.47 2.84
(1, 11+) 0.09 0.10 0.10 0.69 0.15 0.04 0.03 0.00 1.00 0.00 0.00 0.00 0.79 0.97 2.56 2.92

(2, 0) 4.91 1.48 0.28 0.07 0.19 0.41 0.05 0.05 0.10 0.00 0.86 0.00 1.01 0.66 0.92 0.35
(2, 1) 2.54 1.07 0.28 0.14 0.27 0.29 0.02 0.06 0.09 0.00 0.85 0.00 1.03 0.64 1.52 0.96
(2, 2) 2.57 1.32 0.26 0.17 0.34 0.22 0.01 0.04 0.18 0.11 0.66 0.00 1.01 0.62 2.02 1.24
(2, 3) 2.02 1.36 0.24 0.23 0.39 0.13 0.01 0.03 0.21 0.39 0.37 0.00 1.02 0.72 2.36 1.66
(2, 4) 1.33 1.26 0.21 0.32 0.40 0.06 0.01 0.01 0.29 0.65 0.05 0.00 1.04 0.86 2.40 1.94
(2, 5) 0.91 1.20 0.18 0.45 0.32 0.04 0.01 0.01 0.43 0.56 0.00 0.00 1.06 0.92 2.51 2.02
(2, 6) 0.58 1.06 0.15 0.57 0.24 0.03 0.01 0.01 0.73 0.27 0.00 0.00 1.06 0.97 2.59 2.27
(2, 7) 0.35 0.89 0.14 0.64 0.18 0.02 0.01 0.00 1.00 0.00 0.00 0.00 1.06 1.07 2.63 2.46
(2, 8) 0.22 0.62 0.14 0.69 0.14 0.02 0.01 0.00 1.00 0.00 0.00 0.00 1.08 1.03 2.71 2.75
(2, 9) 0.13 0.37 0.14 0.70 0.12 0.03 0.01 0.00 1.00 0.00 0.00 0.00 1.08 1.01 2.73 2.87
(2, 10) 0.07 0.17 0.13 0.72 0.11 0.03 0.01 0.00 1.00 0.00 0.00 0.00 1.06 1.01 2.78 2.92
(2, 11+) 0.07 0.09 0.17 0.68 0.11 0.03 0.01 0.00 1.00 0.00 0.00 0.00 1.08 1.00 2.87 2.97

(3, 0) 4.83 1.94 0.35 0.07 0.26 0.30 0.02 0.06 0.03 0.07 0.83 0.00 1.34 0.78 1.32 0.52
(3, 1) 2.09 1.16 0.34 0.16 0.31 0.16 0.02 0.12 0.10 0.23 0.55 0.00 1.34 0.87 1.89 1.19
(3, 2) 2.02 1.36 0.33 0.22 0.33 0.11 0.02 0.12 0.13 0.39 0.35 0.00 1.33 0.93 2.36 1.66
(3, 3) 1.54 1.34 0.31 0.30 0.32 0.06 0.01 0.11 0.20 0.57 0.12 0.00 1.34 1.03 2.68 2.06
(3, 4) 0.97 1.22 0.28 0.40 0.28 0.04 0.00 0.07 0.43 0.50 0.00 0.00 1.35 1.20 2.72 2.20
(3, 5) 0.65 1.17 0.25 0.48 0.23 0.03 0.00 0.04 0.67 0.29 0.00 0.00 1.33 1.19 2.79 2.35
(3, 6) 0.41 1.03 0.22 0.57 0.19 0.03 0.00 0.01 0.93 0.05 0.00 0.00 1.30 1.16 2.84 2.65
(3, 7) 0.25 0.80 0.20 0.61 0.16 0.03 0.01 0.00 1.00 0.00 0.00 0.00 1.27 1.13 2.88 2.78
(3, 8) 0.15 0.51 0.21 0.67 0.09 0.02 0.01 0.00 1.00 0.00 0.00 0.00 1.31 1.06 2.94 2.91
(3, 9) 0.08 0.27 0.21 0.67 0.09 0.02 0.01 0.00 1.00 0.00 0.00 0.00 1.28 1.05 2.97 2.95
(3, 10) 0.05 0.11 0.22 0.65 0.11 0.01 0.01 0.00 1.00 0.00 0.00 0.00 1.28 1.02 3.00 2.98
(3, 11+) 0.05 0.06 0.27 0.63 0.09 0.01 0.00 0.00 1.00 0.00 0.00 0.00 1.33 1.02 3.10 2.98

(4, 0) 3.83 2.27 0.37 0.06 0.34 0.22 0.01 0.09 0.00 0.13 0.78 0.00 1.36 0.73 1.40 0.49
(4, 1) 1.42 1.13 0.35 0.14 0.40 0.10 0.01 0.17 0.00 0.61 0.23 0.00 1.38 1.06 1.97 1.45
(4, 2) 1.33 1.26 0.35 0.19 0.38 0.07 0.01 0.17 0.00 0.78 0.05 0.00 1.36 1.08 2.40 1.94
(4, 3) 0.97 1.22 0.34 0.29 0.33 0.03 0.01 0.16 0.07 0.77 0.00 0.00 1.36 1.00 2.72 2.20
(4, 4) 0.58 1.11 0.31 0.44 0.22 0.02 0.01 0.13 0.32 0.56 0.00 0.00 1.40 1.13 2.80 2.25
(4, 5) 0.38 1.11 0.29 0.51 0.17 0.02 0.01 0.10 0.61 0.30 0.00 0.00 1.38 1.13 2.87 2.47
(4, 6) 0.23 0.95 0.26 0.57 0.13 0.02 0.02 0.08 0.85 0.08 0.00 0.00 1.35 1.13 2.88 2.81
(4, 7) 0.13 0.69 0.26 0.61 0.10 0.02 0.02 0.04 0.96 0.00 0.00 0.00 1.36 1.09 2.95 2.94
(4, 8) 0.07 0.38 0.27 0.62 0.08 0.02 0.01 0.02 0.98 0.00 0.00 0.00 1.35 1.04 2.97 2.98
(4, 9) 0.04 0.17 0.25 0.63 0.09 0.03 0.01 0.00 1.00 0.00 0.00 0.00 1.33 1.02 2.99 3.00
(4, 10) 0.02 0.06 0.32 0.56 0.09 0.02 0.01 0.00 1.00 0.00 0.00 0.00 1.38 0.98 3.08 2.98
(4, 11+) 0.02 0.02 0.40 0.52 0.07 0.01 0.00 0.05 0.95 0.00 0.00 0.00 1.46 1.06 3.24 2.96

(5, 0) 3.02 2.47 0.41 0.09 0.42 0.08 0.01 0.16 0.00 0.51 0.34 0.00 1.49 1.02 1.63 0.94
(5, 1) 0.98 1.08 0.41 0.19 0.35 0.05 0.01 0.24 0.00 0.71 0.05 0.00 1.48 1.13 2.10 1.65
(5, 2) 0.91 1.20 0.40 0.25 0.30 0.04 0.00 0.25 0.00 0.75 0.00 0.00 1.45 1.10 2.51 2.02
(5, 3) 0.65 1.17 0.39 0.34 0.24 0.03 0.00 0.28 0.16 0.56 0.00 0.00 1.46 1.16 2.79 2.35
(5, 4) 0.38 1.11 0.37 0.44 0.16 0.02 0.01 0.29 0.41 0.30 0.00 0.00 1.49 1.33 2.87 2.47
(5, 5) 0.24 1.07 0.35 0.49 0.12 0.03 0.01 0.28 0.65 0.07 0.00 0.00 1.46 1.39 2.93 2.77
(5, 6) 0.15 0.86 0.34 0.52 0.10 0.03 0.01 0.21 0.79 0.00 0.00 0.00 1.44 1.29 2.94 2.93
(5, 7) 0.08 0.59 0.33 0.55 0.07 0.03 0.01 0.12 0.88 0.00 0.00 0.00 1.42 1.16 3.03 2.98
(5, 8) 0.04 0.32 0.33 0.57 0.06 0.01 0.02 0.05 0.95 0.00 0.00 0.00 1.42 1.07 3.06 3.00
(5, 9) 0.02 0.14 0.35 0.58 0.05 0.01 0.01 0.00 1.00 0.00 0.00 0.00 1.44 1.01 3.10 2.98
(5, 10) 0.01 0.05 0.38 0.56 0.05 0.01 0.00 0.01 0.99 0.00 0.00 0.00 1.46 1.01 3.13 2.98
(5, 11+) 0.01 0.02 0.47 0.49 0.03 0.01 0.00 0.10 0.90 0.00 0.00 0.00 1.57 1.17 3.36 2.98

(6, 0) 2.19 2.48 0.44 0.10 0.43 0.03 0.01 0.20 0.00 0.74 0.06 0.00 1.54 1.15 1.72 1.15
(6, 1) 0.64 0.97 0.46 0.20 0.31 0.02 0.01 0.34 0.00 0.66 0.00 0.00 1.54 1.18 2.20 1.74
(6, 2) 0.58 1.06 0.46 0.26 0.26 0.02 0.01 0.40 0.12 0.48 0.00 0.00 1.53 1.30 2.59 2.27
(6, 3) 0.41 1.03 0.44 0.34 0.19 0.02 0.01 0.49 0.26 0.25 0.00 0.00 1.54 1.49 2.84 2.65
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(6, 4) 0.23 0.95 0.42 0.42 0.12 0.02 0.02 0.54 0.42 0.04 0.00 0.00 1.53 1.67 2.88 2.81
(6, 5) 0.15 0.86 0.40 0.47 0.09 0.02 0.02 0.54 0.46 0.00 0.00 0.00 1.51 1.64 2.94 2.93
(6, 6) 0.08 0.65 0.40 0.50 0.08 0.02 0.00 0.44 0.56 0.00 0.00 0.00 1.53 1.49 3.06 2.97
(6, 7) 0.04 0.42 0.40 0.52 0.07 0.01 0.00 0.31 0.69 0.00 0.00 0.00 1.52 1.33 3.07 2.98
(6, 8) 0.02 0.22 0.39 0.51 0.08 0.01 0.00 0.15 0.85 0.00 0.00 0.00 1.48 1.17 3.10 2.99
(6, 9) 0.01 0.10 0.45 0.48 0.05 0.02 0.00 0.06 0.94 0.00 0.00 0.00 1.57 1.10 3.25 3.00
(6, 10) 0.00 0.03 0.45 0.47 0.07 0.02 0.00 0.07 0.93 0.00 0.00 0.00 1.57 1.10 3.17 3.00
(6, 11+) 0.00 0.02 0.59 0.34 0.03 0.03 0.00 0.23 0.77 0.00 0.00 0.00 1.71 1.31 3.46 3.05

(7, 0) 1.49 2.36 0.46 0.10 0.41 0.03 0.01 0.26 0.00 0.74 0.00 0.00 1.55 1.17 1.76 1.19
(7, 1) 0.40 0.83 0.48 0.23 0.26 0.02 0.00 0.40 0.03 0.57 0.00 0.00 1.57 1.21 2.26 1.85
(7, 2) 0.35 0.89 0.48 0.29 0.21 0.02 0.00 0.50 0.11 0.39 0.00 0.00 1.57 1.39 2.63 2.46
(7, 3) 0.25 0.80 0.47 0.36 0.14 0.02 0.00 0.65 0.17 0.18 0.00 0.00 1.61 1.65 2.88 2.78
(7, 4) 0.13 0.69 0.46 0.43 0.09 0.02 0.01 0.76 0.24 0.00 0.00 0.00 1.59 1.84 2.95 2.94
(7, 5) 0.08 0.59 0.43 0.47 0.09 0.01 0.00 0.76 0.24 0.00 0.00 0.00 1.61 1.82 3.03 2.98
(7, 6) 0.04 0.42 0.42 0.49 0.08 0.02 0.01 0.63 0.37 0.00 0.00 0.00 1.55 1.65 3.07 2.98
(7, 7) 0.02 0.26 0.45 0.47 0.06 0.01 0.00 0.47 0.53 0.00 0.00 0.00 1.61 1.49 3.22 2.99
(7, 8) 0.01 0.13 0.49 0.46 0.05 0.01 0.00 0.25 0.75 0.00 0.00 0.00 1.58 1.28 3.16 2.98
(7, 9) 0.00 0.06 0.52 0.40 0.06 0.01 0.00 0.19 0.81 0.00 0.00 0.00 1.57 1.24 3.37 3.02
(7, 10) 0.00 0.02 0.56 0.34 0.09 0.01 0.00 0.24 0.76 0.00 0.00 0.00 1.57 1.35 3.28 3.18
(7, 11+) 0.00 0.01 0.69 0.27 0.03 0.00 0.00 0.34 0.66 0.00 0.00 0.00 1.80 1.44 3.50 3.16

(8, 0) 0.97 2.14 0.47 0.12 0.38 0.03 0.00 0.32 0.02 0.66 0.00 0.00 1.54 1.14 1.78 1.13
(8, 1) 0.24 0.63 0.48 0.32 0.18 0.01 0.00 0.56 0.17 0.27 0.00 0.00 1.63 1.52 2.37 2.34
(8, 2) 0.22 0.62 0.49 0.38 0.12 0.01 0.00 0.67 0.21 0.12 0.00 0.00 1.63 1.71 2.71 2.75
(8, 3) 0.15 0.51 0.48 0.42 0.10 0.01 0.00 0.78 0.20 0.03 0.00 0.00 1.64 1.85 2.94 2.91
(8, 4) 0.07 0.38 0.48 0.43 0.08 0.01 0.00 0.90 0.10 0.00 0.00 0.00 1.62 1.94 2.97 2.98
(8, 5) 0.04 0.32 0.49 0.43 0.07 0.01 0.00 0.91 0.09 0.00 0.00 0.00 1.64 1.93 3.06 3.00
(8, 6) 0.02 0.22 0.49 0.44 0.05 0.02 0.00 0.80 0.20 0.00 0.00 0.00 1.63 1.82 3.10 2.99
(8, 7) 0.01 0.13 0.49 0.44 0.04 0.02 0.00 0.66 0.34 0.00 0.00 0.00 1.58 1.69 3.16 2.98
(8, 8) 0.00 0.07 0.53 0.42 0.04 0.01 0.00 0.45 0.55 0.00 0.00 0.00 1.69 1.52 3.38 3.04
(8, 9) 0.00 0.03 0.56 0.43 0.01 0.00 0.00 0.50 0.50 0.00 0.00 0.00 1.66 1.60 3.45 3.18
(8, 10) 0.00 0.01 0.66 0.28 0.07 0.00 0.00 0.42 0.58 0.00 0.00 0.00 1.72 1.56 3.52 3.19
(8, 11+) 0.00 0.00 0.83 0.17 0.00 0.00 0.00 0.44 0.56 0.00 0.00 0.00 1.89 1.49 3.51 3.08

(9, 0) 0.64 1.80 0.50 0.16 0.32 0.02 0.00 0.47 0.03 0.51 0.00 0.00 1.56 1.29 1.86 1.47
(9, 1) 0.14 0.40 0.51 0.34 0.12 0.03 0.01 0.69 0.21 0.11 0.00 0.00 1.65 1.74 2.40 2.63
(9, 2) 0.13 0.37 0.51 0.39 0.08 0.02 0.00 0.76 0.24 0.01 0.00 0.00 1.65 1.86 2.73 2.87
(9, 3) 0.08 0.27 0.52 0.38 0.08 0.01 0.00 0.84 0.16 0.00 0.00 0.00 1.68 1.90 2.97 2.95
(9, 4) 0.04 0.17 0.54 0.37 0.08 0.01 0.01 0.97 0.03 0.00 0.00 0.00 1.65 1.98 2.99 3.00
(9, 5) 0.02 0.14 0.55 0.37 0.07 0.01 0.00 0.97 0.03 0.00 0.00 0.00 1.66 1.97 3.10 2.98
(9, 6) 0.01 0.10 0.54 0.39 0.06 0.01 0.00 0.88 0.12 0.00 0.00 0.00 1.68 1.90 3.25 3.00
(9, 7) 0.00 0.06 0.61 0.35 0.04 0.00 0.00 0.73 0.27 0.00 0.00 0.00 1.80 1.78 3.37 3.02
(9, 8) 0.00 0.03 0.64 0.33 0.02 0.00 0.00 0.50 0.50 0.00 0.00 0.00 1.79 1.58 3.45 3.18
(9, 9) 0.00 0.01 0.67 0.31 0.02 0.00 0.00 0.49 0.51 0.00 0.00 0.00 1.77 1.57 3.54 3.14
(9, 10) 0.00 0.00 0.58 0.42 0.00 0.00 0.00 0.42 0.58 0.00 0.00 0.00 1.48 1.56 3.24 3.13
(9, 11+) 0.00 0.00 0.83 0.17 0.00 0.00 0.00 0.38 0.62 0.00 0.00 0.00 2.04 1.52 3.73 3.24

(10, 0) 0.41 1.29 0.51 0.23 0.24 0.01 0.01 0.63 0.32 0.05 0.00 0.00 1.61 1.75 1.99 2.44
(10, 1) 0.08 0.19 0.54 0.35 0.09 0.02 0.00 0.79 0.21 0.00 0.00 0.00 1.70 1.88 2.47 2.84
(10, 2) 0.07 0.17 0.54 0.37 0.08 0.01 0.00 0.85 0.15 0.00 0.00 0.00 1.72 1.91 2.78 2.92
(10, 3) 0.05 0.11 0.56 0.37 0.06 0.01 0.00 0.90 0.10 0.00 0.00 0.00 1.72 1.96 3.00 2.98
(10, 4) 0.02 0.06 0.58 0.33 0.08 0.01 0.00 0.99 0.01 0.00 0.00 0.00 1.70 2.00 3.08 2.98
(10, 5) 0.01 0.05 0.62 0.30 0.07 0.01 0.00 0.96 0.04 0.00 0.00 0.00 1.66 1.97 3.13 2.98
(10, 6) 0.00 0.03 0.58 0.32 0.09 0.02 0.00 0.86 0.14 0.00 0.00 0.00 1.60 1.89 3.17 3.00
(10, 7) 0.00 0.02 0.66 0.31 0.02 0.01 0.00 0.75 0.25 0.00 0.00 0.00 1.71 1.83 3.28 3.18
(10, 8) 0.00 0.01 0.74 0.26 0.00 0.00 0.00 0.51 0.49 0.00 0.00 0.00 1.81 1.63 3.52 3.19
(10, 9) 0.00 0.00 0.79 0.21 0.00 0.00 0.00 0.47 0.53 0.00 0.00 0.00 1.75 1.56 3.24 3.13
(10, 10) 0.00 0.00 0.83 0.17 0.00 0.00 0.00 0.30 0.70 0.00 0.00 0.00 1.57 1.49 3.13 2.98
(10, 11+) 0.00 0.00 NaN NaN NaN NaN NaN 0.36 0.64 0.00 0.00 0.00 NaN 1.48 NaN 3.12

(11+, 0) 0.53 1.21 0.57 0.30 0.12 0.01 0.00 0.75 0.25 0.00 0.00 0.00 1.72 1.86 2.22 2.67
(11+, 1) 0.09 0.10 0.62 0.32 0.06 0.01 0.00 0.91 0.09 0.00 0.00 0.00 1.78 1.94 2.56 2.92
(11+, 2) 0.07 0.09 0.63 0.32 0.05 0.00 0.00 0.94 0.06 0.00 0.00 0.00 1.79 1.97 2.87 2.97
(11+, 3) 0.05 0.06 0.64 0.31 0.05 0.00 0.00 0.94 0.06 0.00 0.00 0.00 1.77 1.96 3.10 2.98
(11+, 4) 0.02 0.02 0.67 0.29 0.04 0.00 0.00 0.89 0.11 0.00 0.00 0.00 1.78 1.91 3.24 2.96
(11+, 5) 0.01 0.02 0.65 0.31 0.04 0.00 0.00 0.80 0.20 0.00 0.00 0.00 1.79 1.81 3.36 2.98
(11+, 6) 0.00 0.02 0.66 0.29 0.05 0.00 0.00 0.65 0.35 0.00 0.00 0.00 1.76 1.74 3.46 3.05
(11+, 7) 0.00 0.01 0.69 0.27 0.03 0.00 0.00 0.57 0.43 0.00 0.00 0.00 1.70 1.73 3.50 3.16
(11+, 8) 0.00 0.00 0.75 0.25 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 1.62 1.59 3.51 3.08
(11+, 9) 0.00 0.00 0.83 0.17 0.00 0.00 0.00 0.47 0.53 0.00 0.00 0.00 1.69 1.71 3.73 3.24
(11+, 10) 0.00 0.00 NaN NaN NaN NaN NaN 0.58 0.42 0.00 0.00 0.00 NaN 1.63 NaN 3.12
(11+, 11+) 0.00 0.00 NaN NaN NaN NaN NaN 0.62 0.38 0.00 0.00 0.00 NaN 1.73 NaN 3.46
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