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Abstract

Markowitz style mean-variance portfolio (MVO) optimization is widely used
both in academia and among financial practitioners. Its limitation, on the
other hand, is also obvious: it treats downside risks indistinguishably from
upside risks. Semivariance is thus proposed to substitute for variance in
the optimization process. However, literature on the relative performance
between MVO and mean-semivariance optimization (MSO) is still lacking.
This paper studies the performance of MVO and MSO under varying asset
return distributions through Monte Carlo simulation. Portfolio returns as
well as several risk-adjusted performance measures popular among financial
practitioners are used for evaluation purposes. On the one hand, we find that
the differences in portfolio returns hetween MVO and MSQO are correlated
with the skewness of asset returns. On the other hand, MSO consistently
outperforms MVO in terms of all but one risk-adjusted performance measures
as long as asset skewness is not close to zero.
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1 Introduction

For the past 40 years, Markowitz mean-variance portfolio optimization (MVO),
along with the Capital Asset Pricing Model (CAPM) which is built upon it,
has been some of the most widely discussed topics among both academics
and practitioners in the financial industry. Markowitz optimization has won
applause especially because of its simplicity: it is only concerned with two
parameters, viz. the expected return and the risk. Whereas the expected
return is easy to define. the measure of risk has constantly drawn debates.

Variance does not distinguish downside risks from upside risks, and a risk
model based on variance will view unexpected losses and gains as similarly
undesirable. The limitation discussed ahove can only be avoided when at
least one of the following two important assumptions holds: (1) returns on
financial assets follow symmetric distributions (2) investors have quadratic
utility functions (Estrada. 2007). More specifically, if asset returns are sym-
nietric. semivariance will contain the same information as variance (more on
this later). and if investors’ utility functions are quadratic upside and down-
side risks will then be similarly undesirable. However, researches in both
financial econometrics and behavioral finance cast serious doubt on both of
them (Bertsimas et al, 2004). Asset returns can display significant positive
or negative skewness at different time frames. and most investors (excluding
those with index tracking objectives) will certainly view downside risks more
undesirable than upside risks.

Markowitz (1952) first proposes using semivariance as an alternative mea-
sure to variance, and he defines it as E(min[0, R, — T]?) where Rp is the
portfolio return and T is the return of a fixed benchmark. Hogan and War-
ren (1974) further develop Markowitz’s suggestion and lay out the theoretical
foundation for empirical researches. Porter (1974) shows that semivariance
models are far more consistent with the stochastic dominance rules. Empiri-
cal research also lends support to the plausibility of differentiating upside risk
and downside risk. Ang, Chen, and Xing (2006) find that stocks with higher
downside risks bear premiums that cannot be explained by currently avail-
able symunetric pricing models. Estrada (2007) concludes that in emerging
markets the CAPM based on downside beta has superior explanatory pow-
ers than traditional symmetric beta, and the paper further observes that the
differences in performance are more pronounced in emerging markets than
in developed markets due to the former’s larger skewness.

Based on the above theoretical and empirical advantages of using semi-



variance over variance in various models, it is plausible to incorporate senii-
variance into portfolio optimization. Specifically, we can perform wecan-
semivariance optimization (MSO) instead of MVO by replacing variance.
standard deviation, and covariance matrix with semivariance, semideviation.
and semicovariance matrix (Estrada 2007). Moreover, Estrada (2007) pro-
poses a heuristic approach for calculating semicovariance matrix that ”makes
mean-semivariance optimization just as easy to implement as mean-variance
optimization”. Computational effort should no longer hinder the practica-
bility of MSO.

Since Estrada’s "heuristic approach” levels the playing field of MVO and
MSO in terms of computational power, the relative performance of MVO vs.
MSO portfolios increasingly becomes the deciding factor hetween the two
methods. It is especially worth recapping and further elaborating here that
the limitation of variance as a risk measurement can potentially be avoided
if distributions of asset returns are symmetric. As Estrada (2005) points
out: If all distributions were symmetric, then the semideviation and the
standard deviation would contain the same information. In another word.
MVO and MSO will generate identical portfolios il return distributions are
perfectly symmetric. And this is not unique to MSO: optimization based on
shortfall, another downside risk measurement, also shares the above property
(Bertsimas et al, 2004). MSO is at least as good as MVO under symmetric
distributions, but its potential advantage depends on return distributions
being asymmetric (Estrada 2005). Hence, it is natural for this paper to focus
on skewness, which is the most common measurement of asymmetry. By
varying the degree of skewness of return distributions, we not only exaiine
if such an advantage exists but also how the level of asymmetry quantitatively
impacts the scale of that advantage.

However, measuring the level of the above stated advantage is not as
straight forward as it seems. In order to gauge the relative performance of
MVO and MSO, we need to calculate the risk-adjusted returns for their op-
timal portfolios. We cannot directly compare MVO’s variance-based Sharpe
ratio (V-Sharpe) and MSO’s semivariance-hased Sharpe ratio (S-Sharpe) for
the obvious reason that they use different risk measurcments. It is also not
proper to apply either V-Sharpe or S-Sharpe alone indistingnishably to hoth
MVO and MSO portfolios: since MVO optimizes V-Sharpe while NSO op-
timizes S-Sharpe, MVO portfolio’s V-Sharpe will invariably be higher than
MSO portfolio’s V-Sharpe given the same set of investable assets and con-
straints, and the reverse is true if we compare MVO and MSO’s S-Sharpe.
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To overcome this difficulty, instead of using one or two measurements that
might potentially bias the results, we use a plethora of performance mea-
sures couunoun in financial practices: Omega, the Sortino ratio, Kappa 3. the
upside potential ratio, the Calmar ratio, the Sterling ratio, the Burke ratio,
and the Modified Sharpe (as detailed in Eling and Schuhmacher, 2007).

Our main contribution to the current literature on mean-semivariance op-
timization is to quantitatively investigate the relationship between the skew-
ness of asset returns and the relative performance of MVO and MSO using
Monte Carlo simulation. Specifically, we present evidence showing that dif-
ferences between MVO and MSO portfolio returns are statistically significant
and are correlated with the skewness of asset returns. When assets are neg-
atively skewed, MSO portfolios in average have higher returns than MVO
portfolios. and the reverse is true when asset returns are positively skewed.
Furthermore, if we compare MSO portfolios and MVO portfolios based on
risk-adjusted performance measures, MSO portfolios invariably outperforms
MVO in terms of all but one measure as long as asset skewness is not close
to zero. If we combine the above two results together, we show that MSO
outperforms MVO in terms of both portfolio return per se as well as risk-
adjusted performance measures when asset returns are negatively skewed.
On the other hand, when asset returns are positively skewed, MSO portfo-
lios have lower returns but higher risk-adjusted performance measures.

The rest of this paper is organized as follows. In Section II, we provide
a detailed description of the optimization method used for both MVO and
MSO and a more detailed exposition of performance measures we use. In
Section III. we use Monte Carlo simulation to systematically compare the
performance of MSO and MVO under different asset return skewness levels.
Section 1V presents results from a series of robustness tests. Section IV
concludes.



2 Methodology

2.1 Optimization Problem

A generic Markowitz style optimization problem can be expressed as the
following!:

E[Rn] — Ry _ Z::l w; B[R] - Ry
T \/ D i1 D WiljT

where E[R,] is the expected portfolio return, Ris the risk free rate of return.
FE[R;] is the expected return of asset i, o, and o;; denote portfolio standard
deviation and the covariance between assets i and j respectively. w; is the
weight assigned to asset i.

The above MVO problem can be casily modified to a MSO problemn by
replacing standard deviation and covariance with semideviation and semi-
covariance. All statistics related to semivariance model are well defined in
Hogan and Warren (1974) and refined in Estrada (2007). In this paper, it
is worth noting that we define semivariance according to Estrada (2007)’s
definition and set our benchmark to the arithmetic mean of return series, so
the semivariance of portfolio returns becomes?:

]\/.[(ll'wl W2 W

(1)

T
£2 = (1/T) > [Min(Ry — 1, 0)]%. (2)
t=1
and semicovariance is:
T
Sij = (1/T) Y [Min(Riy — ;. 0)Min( R — p15,0)] (3)
t=1

For our purpose, both of our MVO and MSO follow an in-sample Markowitz
direct optimization where parameter estimators of risk and return are sa-
ple statistics of the entire investment period of length T. Portfolios are not

'This is only one of the four standard portfolio optimization problems according to
Estrada (2007). The others include:1)minimizing portfolio risk;2)minimizing portfolio visk
subject to target return; and 3)maximizing return subject. to target risk level. Our focus is
on the problem expressed here: maximizing risk-adjusted returns, as per Estrada (2007).

?In terms of notation, we follow Estrada(2007): lower case ¢ denotes variance and
upper case £? denotes semivariance. All parameters expressed are in scaler form applicable
to individual assets.



rebalanced. and returns are calculated using one single set of weights for all
periods within T. Expected return. or realized return in our in-sample opti-
mization. of a given portlolio is calculated as the arithmetic mean of returns
across the T periods, following the precedence in Estrada (2007). We also
apply the following constraints to both MVO and MSO:

> w =1, (4)

where n is the number of assets in the portfolio and w; is the weight assigned
to asset 1. Equation (2) guarantees that the portfolio is fully invested, and
equation (3) allows for short selling and leverage by bounding the weight of
individual assets between -2 and 2.

We set our risk-free rate of return at 0 for both optimization methods.
So for MVO, the optimization problem is to maximize f—": , where o, denotes
the standard deviation of portfolio returns, subject to coilstraints in equation
(2) (3). For MSO we maximize g—: subject to the same constraints.

2.2 Performance Measure

Onr choice ol performance measures follows the precedence in Eling and
Schuhmacher (2007) where several approaches are listed to measure the per-
formance of hedge funds. Those included are: Sharpe ratio, Omega, Sortino
ratio. Kappa 3, upside potential ratio, Calmar ratio, Sterling ratio, Burke
ratio. excess return on value at risk, Conditional Sharpe ratio, and Modified
Sharpe ratio. For our purpose, we exclude Sharpe ratio because it will in-
evitably bias the results as discussed in previous sections. We also exclude
excess return on value at risk and Conditional Sharpe ratio. They both
rely on the assumption that return distributions are symmetric; however,
our preliminary analysis show that both MVO and MSO portfolio returns
are skewed. Instead, we include Modified Sharpe ratio, a more robust VaR
based performance measure that more accurately calculates value at risk un-
der asymmetric return distributions (Favre and Galeano, 2002). Eling and
Schiimacher (2007) categorize the above measures into three groups accord-
ng to the risk measures they use: lower partial moments, drawdown, and
value at risk. We will introduce them in the same order.



2.2.1 Measures based on Lower Partial Moments

Lower partial moment (LPM) calculates the negative deviations of returns
R; from a benchmark 7, and it takes different orders based on an investor's
level of risk averse. LPM of order n is expressed as:

T
LPM,(r) = %Z maz(r — By, 0)" (6)
t=1

The order of LPMs should be chosen based on investors’ risk aversion
level: the more risk averse the higher order should be used. It is also worth
noting that from the expression above, LPM of order 2 is essentially semivari-
ance at benchmark of 0. However, since we set our benchmark for calculating
semivariance as the arithmetic mean of return series, they are not identical
measures. Again, we set risk free rate of return at 0. So Omega. Sortino
ratio, and Kappa 3, which uses LPMs of order 1, 2. or 3 are:

=

weqa; = ————— 1 =
Omega TP, (7) + (7)
Sortino ratio = —t—T__ (8)
/ LPMs(T)
Kappa 3 = e (9)
/ LPM(T)

Eling and Schuhmacher (2007) also includes upside potential ratio, which
is based on the ratio of higher partial moments (HPM) of order 1 to LPM
of order 2. The expression for HPM is simply the positive deviation [rom a
benchmark return 7 analogous to LPMs:

T
HPM,(7) = %Z max(Ry — 7,0)" (10)
t=1

So that upside potential ratio is calculated as:

HPA;
Upside potential ratio = & (11)

/TP, (1)



2.2.2 Measures based on drawdowns

According to Eling and Schuhmacher (2007), drawdown-based measures are
popular among practitioners because they measure the ability of " continually
accumulating gains while consistently limiting losses”. MD of degree i, A/ D;
denotes the ith lowest return. And Calmer, Sterling, and Burke ratio are
based on MD of different degrees:

Calmer ratio = ﬁj—\—[gi (12)
Sterling ratio = K _NRf (13)
(1/N)>>.L, =MD,
-~ R
Burke ratio = / ! (14)

/2L, —MD;

2.2.3 Measure based on value at risk

We also use Modified Sharpe ratio, as introduced by Favre and Galeano
(2002) and included in Eling and Schuhmacher (2007) :

R, .
Modi fied Sharpe = ]\[VI(L (15)

where we assume 0 risk free rate of return, and

MVaR =Wlu—(Z,+ %(Z,2 -1S+ 2—14(23 —-3Z.)K — 31_6(22: —52.)5%)0]
(16)
W denotes total wealth invested, Z. denotes the critical value for probability
(I—c). S denotes skewness, and K excess kurtosis. The above expression is a
Cornish-Fisher expansion that calculates value at risk at significance level o
by taking into consideration the skewness and kurtosis of return distribution.
While both traditional VaR and MVaR are measurements designed to
capture downside risks, MVaR is more robust: MVaR converges to tradi-
tional VaR when return distribution is normal and more accurately computes
Value at Risk for asymmetric and fat-tailed distributions. Thus, MVaR pro-
vides exactly what a risk averse investor cares about: accurate downside risk
estimate. Since neither of NIVO or MSO are optimized for MVaR, it will not
bias risk-adjusted return comparisons in the way variance or semivariance
does by construct.

=1



2.3 Simulation Design

To account for a number of stylized facts of the financial time series such as
volatility clustering, leptokurtosis, and leverage effect, we use GIJR-GARCII
(1, 1) model (Bollerslev,2008). Furthermore, instead of the traditional Gaus-
sian density our model utilizes a skewed Student’s ¢ density, as introduced
by Hansen (1994). to model innovation distributions. Our choice of that
asymmetric innovation density allows us to better model the high level of
skewness often observed in empirical financial data (Lambert and Laurent.
2001). Model specifications arc detailed below:

Rit = E(Rip|Wis-1) + €in, (17)
Cip = OipZig, 2ip ~ skewed Student's t (v;. \;), T (18)
U;f'):f =w; + (CY,'_ + ’)’,‘,I,',,g_l)(t?’t_l + .Bio';'z,t_l (19)
0 :¢:>0
. - b= 9
I],t—l { 1 . ei,,t < 0 (._U)

where R;; is the return of the assct i at time t, ¥ it—1 1s the set of all in-
formation at time ¢ — 1, af’t is the conditional variance term following a
GJR-GARCH (1,1) process, z;, is innovation term which follows a skewed
Student’s ¢ distribution specificd by parameters v; and J\;, and Iij—y is an
indicator of the sign of innovation.

We calibrate the model based on empirical observations of monthly re-
turns of 47 country indices available in the MSCI database. The time period
chosen is from Jun/2005 to May /2015, a total of 120 months. That period
is both the latest data available at the time of this paper and also the nmost
comprehensive since data for a few of developed markets prior to the starting
month Jun/2005 are not included in the database.

We choose the lags for both the ARCH term and the GARCH term in
the model to be 1 for parsimony and generality. For future research on
the application of MSO in specific markets, model selection criterion such as
Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC)
should be used to determine the length of lag. All other parameters, except
the number of lags, are estimated using MFE Toolbox © Kevin Sheppard.
which performs model optimization by maximizing log likelihood.



2.4 Simulation Procedures

In order to investigate the effect of skewness on MSO performance while
controlling for variations in other statistical properties, we need the ability
to vary the skewness of asset returns and at the same time keep return means
and return standard deviations unchanged. Due to the inherent nature of
randomness in owr simulation process, we will not be able to guarantee the
level of skewness as well as means and standard deviations simply by changing
or fixing certain parameters in our models. Instead, we control for those
properties through a selection process using one single set of parameters: we
generate wmore assets than we need, and then pick from them the ones that
display our specified level of skewness, mean, and standard deviation.

Specifically. we first simulate the largest amount of assets based on our
empirical data, which is 47 time series that represent the whole asset universe
analogous to the 47 country indices within the VISCI database. Then we filter
oul the assets whose mean and standard deviation deviate too far from the
level we set. Next, among the remaining assets we further pick those that
display the level of skewness that we wish to investigate while filtering out
all others. After this selection process, the remaining time series will have
the specified level of skewness. mean, and standard deviation. If the number
of those time series exceeds the number of assets we wish to invest in, we
will randomly select [rom them the amount we need. On the other hand, if
there are not enough remaining, we will run the entire simulation again until
enough number of them are obtained.

3 Results

We divide skewness from -1 to 1 into 5 different ranges: [-1. -0.5] for high
level of negative skewness, [-0.5, 0] for moderate level of negative skewness.
[-0.25. 0.25] for near zero skewness, as well as [0, 0.5] and [0.5, 1] for different
levels of positive skewness. We keep our mean monthly returns between |-
1, 1]* and standard deviation between [6, 8]. We calibrate the ranges for
skewness based on both empirical observations and theoretical support, and
we control the range for mean and standard deviations as narrow as possible

3All returns in this paper are in percentages.



without remarkably decreasing computational efficiency. !

For each skewness level, we obtain 5 assets per simulation run according
to the filtering technique described in the last section, and each asset lias
a return series of 1000 periods. Then we generate one NSO and one NVO
portfolio from the simulated assets. We run this simulation and optimization
process for 1000 times. So in total we have 1000 NSO portfolios and 1000
MVO portfolios for each skewness level. All results corresponding to one
specific skewness level are then the average value of such 1000 portfolios.

For all of our performance measures, we assume benchmark 7 to he equal
to the risk free rate which then subsequently equals to 0. For drawdowns in
Sterling ratio and Burke ratio, we consider drawdowns till the 5th largest.
or N = 5. For Modified Sharpe ratio,we evaluate value at risk at 0.05
significance level, thus o = 0.05 and Z, = —1.96 (lollowing the convention
in Eling and Schuhmacher, 2007).We also set our initial wealth W = 1.

Furthermore, we also test for the statistical significance of the differences
between MSO and MVO by performing the sign test. a non-parametric sta-
tistical hypothesis test that compares two matched samples. It tests the null
hypothesis that the median of sample differentials are zero, i.c. the median
of the differences between two samples are zero. It can also be interpreted as
testing if in each pair the two observations have equal chance of being larger
than the other (Diebold and Mariano, 2002) In our context, a rejection will
denote that one portfolio is more likely to outperform the other. It does not
rely on any assumption on population distribution so it is often used as an
alternative to the paired Student’s t-test for paired samples [rom unknown
distributions. It fits our sample because each pair of our portfolios. 1000 of
them in total, are matched in the sense that one pair of MSO and NVO
portfolios are optimized based on the same asset return series. We acknowl-
edge that this test is not specifically designed for testing the risk-adjusted
performance measures we use, though our sample meets all its assumptions.”

“The 90% range for our assets’ skewness, mean, and standard deviation are [-
0.12,0.85],(-0.21,1.34],and [4.81,10.85] respectively. Though there are few positive skewness
series within our empirical data,on longer scales returns do tend to skew to the right(Favre
and Galeano, 2002). We allowed for more negative variations in the mean due to the ran-
domness of our GARCH process, and we are able to control for standard deviation into a
quite narrow range within our empirical range.

5Other assumptions besides that data are paired include: 1)each pair is chosen ran-
domly and independently: and 2)data are measured on an ordinal or continous scale
instead of nominal. Each pair of portfolios are indeed independent of other pairs since
each pair are optimized for different repetitions of simulated asset return series and cach
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observe in Table 1 are the average of a very consistent series of small scale
individual observations.

Furthermore. it is also worth noting that the count of larger-than-zero
observations does not change much as skewness moves from more extreme
levels to moderate levels. Around 75% of MSO portfolios outperform MVO
portfolios when skewness are negative in both [-1,-0.5] range and [-0.5,0]
range. and around the same proportion of underperformance under both
positive skewness ranges. Combined with observations from Table 1. the
level of skewness only affects the scale of the differences but have no effect on
the probability of observing an MSO outperformance or underperformance
as long as skewness is not close to zero, in which case we see that the chance
is around 50%.

[Figure 2]
[Figure 3]

Figure 2 further presents MSO and MVO portfolios’ cumulative return over
the entire investment length, and Figure 3 is a zoom-in for performance in
the first 120 periods.

4 Robustness Test

4.1 Correlation check

As a robustness check, we control for cross correlations among assets. In our
univariate GJR-GARCH model, cross correlations between assets are practi-
cally zero. all lying between -0.1 and 0.1. However, it is also not uncommon
for linancial time series to exhibit far larger cross correlations during differ-
cnt time frames or in different asset classes. And we recognize that cross
correlation might have an impact on our results, so we use a multivariate
Constant Conditional Correlation (CCC) -GJR-GARCH (1,1) with skewed
Student’s ¢ innovations to model assets that display significant cross corre-
lations (Bollerslev, 2008; He and Tersvirta, 2004). The model is specified as
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below:

Ry = E(Ri|Li-1) + €, (21)
e = H?2, 2, ~ skewed Student’s 1 (v, \), (22)
Hy = D:PD;, (23)
P = [pj], (24)
D, = diag(hi/,z, h}\ﬁ) (23)
hiy = w;i + (a; + ’)’i]j,f,_l)f?’t_l + Bhis-1, (20)

Rt is a N by 1 vector for returns on all assets at time t, ¢; a N hy 1
vector containing the error terms for all assets, H; is the conditional variance-
covariance matrix whose entries are generated through a GJR-GARCH (1.
1) process, and P is the constant conditional correlation matrix.

The same data are used for calibrating parameters in this model as in the
univariate model. However, estimation methods are a bit more nuanced. Due
to a lack of log likelihood function within the MFE Toolbox for multivariate
models coupled with skewed Student’s ¢ distribution, parameters except for
v and A arc first estimated through maximizing the log likelihood of CCC-
GJR-GARCH (1, 1) with Gaussian innovation, and then we use the same
parameter specifications for v and A obtained through the previous univari-
ate model to guard our skewed Student’s ¢ innovation process for each asset
in this multivariate model. This not only guarantees that our multivariate
model still captures the stylized facts about financial time series as discussed
in previous sections, but also enables us to control for skewness while mod-
eling high levels of cross correlation. The average correlation matrix across
all repetitions for 5 assets in our model is:

1 0.69 069 0.68 0.66
069 1 0.68 0.67 0.66
0.69 0.68 1 0.68 0.67
0.68 0.67 068 1 0.65
0.66 0.66 0.67 065 1

We also follow the same simulation procedures as in our univariate model.
only changing the total number of repetitions from 1000 to 200 for compu-
tational efficiency. We still simulate a universe a 47 assets with 1000 periods
of returns and then use the same selection process to pick the five thal we
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will invest in, and we run it for 1000 times. Results reported below are the
average of those 1000 repetitions.

Our results show that using the CCC model, MSO and MVO do not
display any practically significant differences in terms of all performance
measures including portfolio returns. All differences in returns are less than
1 basis point. This result is not entirely unexpected. Since the assets in CCC
model all display a correlation around 0.7 as per our calculation, different
assets will exhibit similar levels of downside risks as well as similar upside
risks. Thus, the portfolio cannot be well diversified with either MVO or
MSO, and their returns will hence be much more aligned with each other.

4.2 Mean and standard deviation check

In this section we expand the range of mean and standard deviation to inten-
tionally introduce more noise into our asset return series, and we investigate
the relative performance between MSO and MVO with the same methodol-
ogyv 11 previous sections. The results are shown in Exhibit 2.

[Exhibit 2]

From Exhibit 2 we can observe that all the entries remain qualitatively
the same as in Exhibit 1: no signs have changed. Quantitatively, however.
there is a difference between the effects from mean and standard deviation.
In Panel A, we expand the range for mean from our previous [-1,1] to [-2,2]
and [-3,3] respectively while keeping the range of standard deviation still
within [6.8]. Numecrically spcaking, differences in all performance measures
increase significantly. It is also worth noting that the z-scores reported from
sign test are considerably lower, though still significant at 0.01. However, it
does not necessarily indicate that the relative performances between MSQO
and MVO are less consistent. More likely it is the result of decreasing sample
size in our robustness test. Indeed, per our calculation the proportions of
NSO outperforimances in portfolio return at skewness of [-1,-0.5] are 82%
and 76% for mean at [-2,2] and [-3,3] respectively. They are in line with the
proportions we observe in the previous section, if not higher. As for broader
ranges of standard deviations, we do not find much change in performance
compared with observations in Exhibit 1.



5 Conclusion

Ever since the adoption of Markowitz-style mean-variance optimization for
asset allocation, the method has been under criticism for its lack of distine-
tion between downside risks and upside risks. Markowitz first proposes using
semivariance to substitute for variance. and literature has so far huilt on
his proposal and laid the groundwork for putting semivariance into practice.
This paper contributes to the current literature by systematically investi-
gating how mean-semivariance optimization behaves compared with conven-
tional mean-variance optimization under different asset distribution scttings.
To the center of our research. we examine the effect of asset return skew-
ness since various available literature points to potential benefits of using
semivariance models in skewed markets.

Our results show that MSO outperforms MVO in terms of all but one
performance measures as long as asset skewness is not close to zero. We also
observe a consistent negative relationship between asset skewness and tlie
difference between MVO and MSO portfolio returns: the lower the skewness.
the larger the scale of MSO outperformance. However, the chance for such
outperformance to occur does not change with skewness. Furthermore, our
robustness test results show that high levels of cross correlation among assets
will practically eliminate the differences between MSO and MVO in terms
of all performance measures. Nonetheless, MSO is at least as good as MVO.
The introduction of more noise in mean, on the other hand, dramatically
increases the differences between MSO and MVO without sacrificing the level
of consistency.

In practice, mean-semivariance optimization is still not widely used partlyv
due to a lack of understanding of the relative performance between MSO and
the more familiar MVO. This paper presents results that a risk-averse investor
whose utility aligns more closely with alternative performance measures than
traditional Sharpe ratio should definitely apply MSO rather than MVO. fur-
ther considering that MSO and MVO now require nearly identical levels of
computational power. Moreover, for practitioners who are either risk neutral
or whose utility entails more considerations than the measurements used in
this paper, the distribution of return differences between MSO and MVO will
certainly be beneficial in making more informed investment decisions.
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Figure 1: Distribution of 1000 MVO / MSO Potfolio Return Differences
The five figures below show the histogram for the difference between 1000 pairs of MSO and MVO

portfolio returns. Figures differ by asset skewness ranges. Differences are calculated as MSO return minus

MVQO return. >0 count’ donates the number, out of | 000, that the return difference is larger than zero. ‘s’

denotes skewness level,

base tral -1<s<-0.5 -0.5<s <0 -0.26<s<0.25
>0 count: 727 >0 count: 722 >0 count: 480
150 T 120 200
100
150 ]
100 80
60 1 100 1
50 g 40
50
20 ]
gl 0 1 0
-0.5 0 0.5 1 1.5 -0.5 0 0.5 1 -0.4 -0.2 0 0.2
0<s<05 0.5<s <1
>Q count: 271 >0 count: 215
80 100 -
60
40
20
1t dilk
-1 -0.5 0 0.5

0.4



Figure 2: Cumulative Performance of 1000 MVO/MSO Potfolio Returns
The five figures below show the cumulative MVO and MSO portfolio performance through 1000 periods.

The start point is | dollar for both portfolios. Figures differ by level of skewness, denoted as s. Since we
repeated 1000 times for each skewness level, return for each single period is the average value of 1000

simulation runs.
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Figure 3: Cumulative Performance of 120 MVO/MSO Potfolio Returns

The five figures below show the cumulative MVO and MSO portfolio performance among the first 120
months. The start point is 1 dollar for both optimazition methods. Figures differ by asset skewness ranges

denoted as s. Since we simulated 1000 times for each skewness level, performance for each period is the

average value of 1000 simulation runs.
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