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Abstract

We develop a model of school choices by households under the popular

Boston mechanism (BM) and a new method to fully solve household problem

that is infeasible to solve via traditional method. We estimate the joint distri-

bution of household preferences and sophistication types using administrative

data from Barcelona. Our counterfactual policy analyses show that a change

from BM to the student deferred acceptance mechanism would create more

losers than winners and decrease the average welfare by 1,020 euros, while a

change from BM to the top trading cycles mechanism has the opposite e¤ect

and increases the average welfare by 460 euros.
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1 Introduction

In many countries, every child is guaranteed free access to education in some public

school. However, not all public schools are of the same quality, nor are higher-quality

schools distributed evenly across residential areas. Designed to broaden households�

access to schools beyond their neighborhoods, public school choice systems have been

increasingly adopted in many countries, including the U.S.1 On the one hand, the

quality of schools to which students are assigned can have signi�cant long-term e¤ects

for individual families as well as important implications on e¢ ciency and equity for

a society.2 On the other hand, schools are endowed with certain capacities and not

all choices can be satis�ed. As a result, how to operationalize school choice, i.e.,

what procedure should be used to assign students to schools, becomes a non-trivial

question that remains heatedly debated on among policy makers and researchers.

One important debate centers around a procedure known as the Boston mechanism

(BM), which was used by Boston Public Schools (BPS) between 1999 and 2005 to

assign K-12 pupils to city schools, and still is one of the most popular school choice

systems in the world. In BM, a household submits its applications in the form of

an ordered list of schools. All applicants are assigned to their �rst choices if there

are enough seats in those schools. If a given school is over-demanded, applicants are

accepted in the order of their priorities for that school.3 Those rejected from their �rst

choices face a dramatically decreased chance of being accepted to any other desirable

schools since they can only opt for the seats that remain free after everyone�s �rst

choice has been considered. As a result, some parents may refrain from ranking schools

truthfully, which makes BM vulnerable to manipulation (Abdulkadiro¼glu and Sönmez

(2003)). In 2005, the BPS replaced BM with the Gale-Shapley student deferred

acceptance mechanism (GS), originally proposed by Gale and Shapley (1962), which

1Some studies have explored exogenous changes in families�school choice sets to study the impacts
of school choice on students�achievement, e.g., Abdulkadiro¼glu, Angrist, Dynarsky, Kane and Pathak
(2010), Deming, Hastings, Kane and Staiger (2014), Hastings, Kane and Staiger (2009), Lavy (2010),
Mehta (2013) and Walter (2013). Other studies focus on how the competition induced by student�s
school choices a¤ects school performance, e.g., Hoxby (2003) and Rothstein (2006).

2See Heckman and Mosso (2014) for a comprehensive review of the literature on human develop-
ment and social mobility.

3Priorities for a given school are often determined by whether or not one lives in the zone that
contains that school, whether or not one has siblings enrolled in the same school, and some other
socioeconomic characteristics, with a random lottery to break the tie.
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provides incentives for households to reveal their true preferences.4

Although the vulnerability of BM to manipulation is widely agreed upon, it re-

mains unclear whether or not it should be replaced in other cities as well.5 In practice,

the switch decision by the BPS was resisted by some parents.6 In theory, the e¢ ciency

and equity comparison between BM and its alternatives remains controversial.7 The

welfare implications of various mechanisms thus become an empirical question, one

that needs to be answered before a switch from BM to GS or some other mechanisms

is recommended more widely.

To answer this question, one needs to quantify two essential but unobservable

factors underlying households�choices, which is what we do in this paper. The �rst

factor is household preferences, without which one could not compare welfare across

mechanisms even if household choices were observed under each alternative mecha-

nism. Moreover, as choices are often not observed under counterfactual scenarios,

one needs to predict which households would change their behaviors and how their

behaviors would change, were the current mechanism switched to a di¤erent one. The

knowledge of household preferences alone is not enough for this purpose. Although

BM gives incentives for households to act strategically, there may exist non-strategic

households that simply rank schools according to their true preferences.8 A switch

from BM to GS, for example, will induce behavioral changes only among strategic

households who hide their true preferences under BM. Therefore, the knowledge about

the distribution of household types (strategic or non-strategic) becomes a second es-

sential factor for one to assess the impacts of potential reforms in the school choice

system.

We develop a model of school choices under BM by households who di¤er in both

their preferences for schools and their strategic types. Non-strategic households �ll

out their application forms according to their true preferences. Strategic households

take admissions risks into account to maximize their expected payo¤s, who may hide

4See Abdulkadiro¼glu, Pathak, Roth and Sönmez (2005) for a description of the Boston reform.
5Pathak and Sönmez (2013) document switches in Chicago and England from certain forms of the

Boston mechanism to less-manipulable mechanisms, and argue that these switch decisions revealed
government preferences against mechanisms that are (excessively) manipulable.

6See Abdulkadiro¼glu, Che, and Yasuda (2011) for examples of the concerns parents had.
7See the literature review below.
8There is direct evidence that both strategic and non-strategic households exist. For example,

Abdulkadiro¼glu, Pathak, Roth and Sönmez (2006) show that some households in Boston obviously
failed to strategize. Calsamiglia and Güell (2014) prove that some households obviously behave
strategically. Estimation results in our paper are such that both types exist.
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their true preferences. A household�s expected payo¤ depends on how it selects and

ranks schools on its application list. The standard way to solve this problem involves

selecting the best permutation from all possible ones out of the set of schools. When

the number of schools is relatively big, such a solution soon becomes infeasible because

the dimensionality of this problem grows exponentially with the number of schools.

We discover two properties of the student-school allocation mechanism that have

not been utilized in this literature, and show that the problem can be fully solved via

backward induction even when the household faces a large choice set that is infeasible

to handle using the standard method.

We apply our model to a rich administrative data set from Barcelona, where a BM

system has been used to allocate students across over 300 public schools. The data

contains information on applications, admissions and enrollment for all Barcelona

families who applied for schools in the public school system in the years 2006 and

2007. In particular, we observe the entire application list submitted by each applicant,

who can rank-list up to 10 out of the over 300 schools. We also observe applicants�

family addresses, hence home-school distances, and other family characteristics that

allow us to better understand their decisions. Between 2006 and 2007, there was a

drastic change in the o¢ cial de�nition of school zones that signi�cantly altered the

set of schools a family had priorities for in the school assignment procedure. We

estimate our model via simulated maximum likelihood using the 2006 pre-reform

data. We conduct an out-of-sample validation of our estimated model using the 2007

post-reform data. The estimated model matches the data in both years well.

The results of the out-of-sample validation provide enough con�dence in the model

to use it to perform counterfactual policy experiments, where we assess the perfor-

mance of two popular and truth-revealing alternatives to BM: GS and the top trad-

ing cycles mechanism (TTC) (Abdulkadiro¼glu and Sönmez (2003)).9 We �nd that

a change from BM to GS bene�ts fewer than 12% of the households while hurting

33% of households. An average household loses by an amount equivalent to 1,020

euros. In contrast, a change from BM to TTC bene�ts 25% of households and hurts

21% of them. An average household bene�ts by an amount equivalent to 460 euros.

Compared to TTC, BM and GS ine¢ ciently assign households to closer-by but lower-

quality schools. On the equity side, a switch from BM to GS is more likely to bene�t

9TTC was inspired by top trading cycles introduced by Shapley and Scarf (1974) and adapted by
Abdulkadiro¼glu and Sönmez (2003). To our knowledge, only New Orleans has implemented TTC.
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those who live in higher-school-quality zones than those who live in lower-school-

quality zones, hence enlarging the cross-zone inequality. In contrast, the quality of

the school zone a household lives in does not impact its chance to win or to lose in

a switch from BM to TTC. We also �nd that while TTC enables 59% of households

whose favorite schools are out of their zones to attend their favorite schools, this

fraction is only 47% under BM and 42% under GS.

Our paper contributes to the literature on school choices, in particular, the liter-

ature on the design of centralized choice systems initiated by Balinski and Sönmez

(1999) for college admissions, and Abdulkadiro¼glu and Sönmez (2003) for public school

choice procedures.10 Abdulkadiro¼glu and Sönmez (2003) formulate the school choice

problem as a mechanism design problem, and point out the �aws of BM, including

manipulability. They also investigate the theoretical properties of two alternatives to

BM: GS and TTC. Since then, researchers have been debating the properties of BM.

Some studies suggest that the fact that strategic ranking may be bene�cial under BM

creates a potential issue of equity since parents who act honestly (non-strategic par-

ents) may be disadvantaged by those who are strategically sophisticated (e.g., Pathak

and Sönmez (2008)). Using the pre-2005 data provided by the BPS, Abdulkadiro¼glu,

Pathak, Roth and Sönmez (2006) �nd that households that obviously failed to strate-

gize were disproportionally unassigned. Calsamiglia and Miralles (2014) show that

under certain conditions, the only equilibrium under BM is the one in which families

apply for and are assigned to schools in their own school zones, which causes concerns

about inequality across zones. Besides equity, BM has also been criticized on the basis

of e¢ ciency. Experimental evidence from Chen and Sönmez (2006) and theoretical

results from Ergin and Sönmez (2006) show that GS is more e¢ cient than BM in

complete information environments. However, in a series of studies, Abdulkadiro¼glu,

Che, and Yasuda (2011); Featherstone and Niederle (2011); and Miralles (2008) all

provide examples of speci�c environments where BM is more e¢ cient than GS.11 The

theoretical debates are still ongoing. For example, some recent studies challenge the

robustness of the results from Abdulkadiro¼glu, Che, and Yasuda (2011) to their as-

sumptions about preferences and the priority structure, e.g., Troyan (2012), Akyol

(2014) and Lu (2015).

10While student priorities for a certain college depends on the college�s own �preferences� over
students; student priorities for public schools are de�ned by the central administration.
11Abdulkadiro¼glu, Che, and Yasuda (2011) also point out that some non-strategic parents may

actually be better o¤ under BM than under GS.
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Although there have been extensive theoretical discussions about the strength

and weakness of alternative school choice mechanisms, empirical studies designed to

quantify the di¤erences between these alternatives have been sparse.12 Hwang (2015)

set-identi�es household preferences under the assumption that a household would rank

a popular school on its report only if it prefers this school to less popular ones. He

(2012) estimates an equilibrium model of school choice under BM using data from one

neighborhood in Beijing that contains four schools, for which households have equal

priorities to attend. Under certain assumptions, he estimates household preference

parameters by grouping household choices, without having to model the distribution

of household sophistication types. On the one hand, the approach in He (2012) allows

one to be agnostic about the distribution of household strategic types during the

estimation, hence imposing fewer presumptions on the data. On the other, it restricts

his model�s ability to conduct cross-mechanism comparisons. Assuming all households

are strategic, Agarwal and Somaini (2015) interpret a household�s submitted report as

a choice of a probability distribution over assignments. Similar to our approach, they

exploit the observed assignment outcomes and estimate household preferences without

having to solve for the equilibrium. They introduce a class of mechanisms for which

consistent estimation is feasible and establish conditions under which preferences are

non-parametrically identi�ed. In an extension, they allow for the existence of both

strategic and non-strategic households. They apply their method to the Controlled

Choice Plan in Cambridge, MA, in which each household can rank up to 3 out of 25

possible school programs. Although these households face a much smaller choice set

than those in Barcelona, they also �nd that the average household welfare would be

lower under GS than under the status quo.

Our paper well complements the three papers mentioned above. We estimate both

household preferences and the distribution of strategic types. We show how one can

solve and estimate a model where households face a large choice set that is infeasible

to handle using the standard method. We apply our model to the administrative

data that contain the application, assignment and enrollment outcomes for the entire

city of Barcelona, where households are given priorities to schools in their own school

zones. With access to this richer data set, we are able to form a more comprehensive

12With a di¤erent focus, Abdulkadiro¼glu, Agarwal and Pathak (2014) show the bene�ts of cen-
tralizing school choice procedures, using data from New York city where high school choices used to
be decentralized.
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view of the alternative mechanisms in terms of the overall household welfare and the

cross-neighborhood inequality.

Also related to our paper are studies that use out-of-sample �ts to validate the

estimated model.13 Some studies do so by exploiting random social experiments,

e.g., Wise (1985), Lise, Seitz and Smith (2005) and Todd and Wolpin (2006), or

lab experiments, e.g., Bajari and Hortacsu (2005). Other studies do so using major

regime shifts. McFadden and Talvitie (1977), for example, estimate a model of travel

demand before the introduction of the BART system, forecast the level of patronage

and then compare the forecast to actual usage after BART�s introduction. Pathak

and Shi (2014) aim at conducting a similar validation exercise on the data of school

choices before and after a major change in households�choice sets of public schools,

introduced in Boston in 2013.14 Some studies, including our paper, deliberately hold

out data to use for validation purposes. Lumsdaine, Stock and Wise (1992) estimate

a model of worker retirement behavior of workers using data before the introduction

of a temporary one-year pension window and compare the forecast of the impact

of the pension window to the actual impact. Keane and Mo¢ tt (1998) estimate

a model of labor supply and welfare program participation using data after federal

legislation that changed the program rules. They used the model to predict behavior

prior to that policy change. Keane and Wolpin (2007) estimate a model of welfare

participation, schooling, labor supply, marriage and fertility on a sample of women

from �ve US states and validate the model based on a forecast of those behaviors on

a sixth state.

The rest of the paper is organized as follows. The next section gives some back-

ground information about the public school system in Barcelona. Section 3 describes

the model. Section 4 explains our estimation and identi�cation strategy. Section 5

describes the data. Section 6 presents the estimation results. Section 7 conducts coun-

terfactual experiments. The last section concludes. The appendix contains further

details and additional tables.
13See Keane, Todd and Wolpin (2011) for a comprehensive review.
14The authors are waiting for the post-reform data to �nish their project.
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2 Background

2.1 The Public School System in Spain

The public school system in Spain consists of over 300 schools that are of two types:

public and semi-public.15 Public schools are fully �nanced by the autonomous com-

munity government and are free to attend.16 The operation of public schools follows

rules that are de�ned both at the national and at the autonomous community level.

Depending on the administrative level at which it is de�ned, a rule applies uniformly

to all public schools nationally or autonomous-community-wise. This implies that all

public schools in the same autonomous community are largely homogenous in terms

of the assignment of teachers, school infrastructure, class size, curricula, and the level

of (full) �nancial support per pupil.

Semi-public schools are run privately and funded via both public and private

sources.17 The level of public support per pupil for semi-public schools is de�ned

at the autonomous community level, which is about 60% of that for public schools.

Semi-public schools are allowed to charge enrollee families for complementary ser-

vices. In Barcelona, the service fee per year charged by semi-public schools is 1; 280

euros on average with a standard deviation of 570 euros.18 On average, of the total

�nancial resources for semi-public schools, government funding accounts for 63%, ser-

vice fees account for 34%, and private funding accounts for 3%. Semi-public schools

have much higher level of autonomy than public schools. They can freely choose

their infrastructure facilities, pedagogical preferences and procedures. Subject to the

government-imposed teacher credential requirement, semi-public schools have controls

over teacher recruiting and dismissal. However, there are some important regulations

semi-public schools are subject to. In particular, all schools in the public school sys-

tem, public or semi-public, have to unconditionally accept all the students that are

15Semi-public schools were added into the system under a 1990 national educational reform in
Spain (LOGSE). In our sample period, there were 158 public schools and 159 semi-public schools.
16Spain is divided into 17 autonomous communities, which are further divided into provinces

and municipalities. A large fraction of educational policies are run at the autonomous community
(Comunidades Autonomas) and municipality levels (municipios) following policies determined both
at the national and at the local levels. In particular, the Organic Laws (Leyes Orgánicas) establish
basic rules to be applied nationally; while autonomous communities further develop these rules
through what are called Decretos.
17See http://www.idescat.cat/cat/idescat/publicacions/cataleg/pdfdocs/dossier13.pdf for details.
18The median annual housesehold income is 25; 094 euros in Spain and 26; 418 euros in Catalunya.
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assigned to them via the centralized school choice procedure that we describe in the

next subsection; and no student can be admitted to the public school system with-

out going through the centralized procedure. In addition, all schools have the same

national limit on class sizes.

Outside of the public school system, there are a small number of private schools,

accounting for only 4% of all schools in Barcelona. Private schools receive no public

funding and charge very high tuition, ranging from 5,000 to 16,000 euros per year

in Barcelona. Private schools are subject to very few restrictions on their operation;

and they do not participate in the centralized school choice program.19

2.2 School Choice within the Public School System

The Organic Law 8/1985 establishes the right for families to choose schools in the

public school system for their children. The national reform in 1990 (LOGSE) ex-

tended families�right to guarantee the universal access for a child 3 years or older to

a seat in the public school system, by requiring that preschool education (ages 3-5)

be o¤ered in the same facilities that o¤er primary education (ages 6-12). Although

a child is guaranteed a seat in the public school system, individual schools can be

over-demanded. The Organic Law from 2006 (LOE) speci�es broad criteria that au-

tonomous communities shall use to resolve the overdemand for schools. Catalunya,

the autonomous community for the city of Barcelona, has its own Decretos in which

it speci�es, under the guideline of LOE, how overdemand for given schools shall be

resolved. In particular, it describes broad categories over which applicants may be

ranked and prioritized, known as the priority rules.

Families get access to schools in the public school system via a centralized school

choice procedure run at the city or municipality level, in which almost all families

participate.20 Every April, participating families with a child who turns three in that

calendar year are asked to submit a ranked list of up to 10 schools. Households who

submit their applications after the deadline (typically between April 10th and April

20th) can only be considered after all on-time applicants have been assigned.21 All

19For this reason, information on private schools is very limited. Given the lack of information on
private schools and the small fraction of schools they account for, we treat private schools as part
of the (exogenous) outside option in the model.
20For example, in 2007, over 95% of families with a 3-year old child in Barcelona participated in

the application procedure.
21See Calsamiglia and Güell (2014) for more details on the application forms and the laws under-
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applications are typed into a centralized system, which assigns students to schools via

a Boston mechanism.22 The �nal assignment is made public and �nalized between

April and May, and enrollment happens at the beginning of September, when school

starts. In the assignment procedure, all applicants are assigned to their �rst choice

if there are enough seats. If there is overdemand for a school, applicants are priori-

tized according to the government-speci�ed priority rules. In Catalunya, a student�s

priority score is a sum of various priority points: the presence of a sibling in the

same school (40 points), living in the zone that contains that school (30 points), and

some other characteristics of the family or the child (e.g., disability (10 points)). Ties

in total priority scores are broken through a fair lottery. The assignment in every

round of the procedure is �nal, which implies that an applicant rejected from her

�rst-ranked school can get into her second-ranked school only if this school still has

a free seat after the �rst round. The same rule holds for all later rounds.

In principle, a family can change schools within the public school system after

the assignment. This is feasible only if the receiving school has a free seat, which is

a near-zero-probability event in popular schools. The same di¢ culty of transferring

schools persists onto the preschool-to-primary-school transition because a student has

the priority to continue her primary-school education in the same school she enrolled

for preschool education, and because school capacities remain the same in preschools

and primary schools (which are o¤ered in the same facilities). A family�s initial school

choice continues to a¤ect the path into secondary schools as students are given prior-

ities to attend speci�c secondary schools depending on the schools they enrolled for

primary-school education. On the one hand, besides the direct e¤ect of quality of the

preschool on their children�s development, families�school choice for their 3-year-old

children have long-term e¤ects on their children�s educational path due to institu-

tional constraints. On the other hand, the highly centralized management of public

schools in Barcelona reduces the stakes families take by narrowing the di¤erences

across schools.

lying this procedure.
22We will describe the exact procedure in the model section.
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2.3 Changes in the De�nition of Zones (2007)

Before 2007, the city of Barcelona was divided into �xed zones; families living in

a given zone had priorities for all the schools in that zone.23 Depending on their

speci�c locations within a zone, families could have priorities for in-zone schools that

were far away from their residence while no priority for schools that were close-by

but belonged to a di¤erent zone. This is particularly true for families living around

the corner of di¤erent zones. In 2007, a family�s school zone was rede�ned as the

smallest area around its residence that covered the closest 3 public and the closest 3

semi-public schools, for which the family was given residence-based priorities.24 The

2007 reform was announced abruptly on March 27th, 2007, before which there had

been no public discussions about it. Families were informed via mail by March 30th,

who had to submit their lists by April 20th.

3 Model

3.1 Primitives

There are J public schools distributed across various school zones in the city. In the

following, schools refer to non-private (public, semi-public) schools unless speci�ed

otherwise. There is a continuum of households of measure 1 (we use the words house-

hold, applicant, student and parent interchangeably). Each household submits an

ordered list of schools before the o¢ cial deadline, after which a centralized procedure

is used to assign students according to their applications, the available capacity of

each school and a priority structure.25 A student can either choose the school she is

assigned to or the outside option.

23Before 2007, zones were de�ned di¤erently for public and semi-public schools. A family living
at a given location had priorities for a set of public schools de�ned by its public-school zone, and
a set of semi-public schools de�ned by its semi-public-school zone. Throughout the paper, in-zone
schools refer to the union of these two sets of schools; and two families are said to live in the same
zone if they have the same set of in-zone schools.
24There were over 5,300 zones under this new de�nition. See Calsamiglia and Güell (2014) for a

detailed description of the 2007 reform.
25As mentioned in the background section, almost all families participate in the application proce-

dure. For this reason, we assume that the cost of application is zero and that all families participate.
This is in contrast with the case of college application, which can involve signi�cant monetary and
non-monetary application costs, e.g., Fu (2014).

10



3.1.1 Schools

Each school j has a location lj, a vector wj of observable characteristics, and a

characteristic �j that is observable to households but not the researcher. All school

characteristics are public information.26 No school can accommodate all students,

but the total capacity of all schools is at least 1, hence each student is guaranteed a

seat in the public school system.

3.1.2 Households

A household i has characteristics xi; a home location li, idiosyncratic tastes for schools

�i = f�ijgj, and a type T 2 f0; 1g (non-strategic or strategic):27 Household tastes
and types, known to households themselves, are unobservable to the researcher. We

assume the vector �i is independent of (xi; li) and follows an i.i.d. distribution F� (�).28

The fraction of strategic households varies with household characteristics and home

locations, given by � (xi; li) : Conditional on observables, the two types di¤er only in

their behaviors (as we specify below), but share the same distribution of preferences.

Remark 1 It is worth noting that we do not take a stand on why some households
are strategic while some are not. This is an important research question, especially

if a policy change may a¤ect the fraction of strategic households. This is less of a

concern in our case, because the major goal of this paper is to investigate the impact

of switching BM to some other mechanisms that are truth-revealing. Under a truth-

revealing mechanism, all households, strategic or not, will rank schools according to

their true preferences, i.e., types no longer matter. Once we recover household pref-

erences and the (current) distribution of strategic versus non-strategic types in the

data, we can compare the current regime with its alternatives without knowing how

household types will change in the new environment.

26We assume that households have full information about school characteristics. Our data do not
allow us to separate preferences from information frictions. Some studies have taken a natural or
�eld experiment approach to shed light on how information a¤ects schooling choices, e.g., Hastings
and Weinstein (2008) and Jensen (2010).
27Our model is �exible enough to accomodate but does not impose any restriction on the existence

of either strategic and non-strategic types. The distribution of the two types is an empirical question.
With a parsimonious two-point distribution of sophistication types, the model �ts the data well. We
leave, as a future extension, more general speci�cations of the type distribution with more than two
levels of sophistication.
28In particular, we assume each component of �i follows N

�
0; �2�

�
:
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As is common in discrete choice models, the absolute level of utility is not identi-

�ed, we normalize the ex-ante value of the outside option to zero for all households.

That is, a household�s evaluation of each school is relative to its evaluation of the

outside option, which may di¤er across households. Let dij = d (li; lj) be the distance

between household i and school j, and di = fdijgj be the vector of distances to all
schools for i: Household i�s utility from attending school j; regardless of its type, is

given by

uij = U (wj; xi; dij; �j) + �ij;

where U (wj; xi; dij; �j) is a function of the school and household characteristics and

the home-school distance.29

Between application and enrollment (about 6 months), the value of the outside

option is subject to a shock �i s i:i:d: N(0; �2�). A household knows the distribution
of �i before submitting the application, and observes it afterwards. For example, a

parent may experience a wage shock that changes her ability to pay for the private

school. This post-application shock rationalizes the fact that some households in the

data chose the outside option even after being assigned to the schools of their �rst

choice. Due to the potential shocks to the outside option, applying for schools in the

public school system provides an option value for households.

Remark 2 Following the literature on school choice mechanisms, our model abstracts
from peer e¤ects and social interactions.30 The major complication is the potential

multiple equilibria problem arising from peer e¤ects and social interactions, even under

mechanisms such as GS and TTC. Comparing BM with its alternatives would become

infeasible because, on the one hand, theory does not provide guidance about the nature

of the set of equilibria; on the other, searching for all possible equilibria numerically

is infeasible.

29Our initial estimation allows a function of zone characteristics to also enter household utility
function in order to capture some common preference factors that exist among households living in
the same zone. In a likelihood ratio test, we cannot reject that the simpler speci�cation presented
here explains the data just as well as the more complicated version.
30See Epple and Romano (2011) and Blume, Brock, Durlauf and Ioannides (2011) for comprehen-

sive reviews on peer e¤ects in education and on social interactions, respectively.
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3.2 Priority and Assignment

In this subsection, we describe the o¢ cial rules on priority scores and the assignment

procedure.

3.2.1 The Priority Structure

A household i is given a priority score sij for each of the schools j = 1; :::; J: Let Si =

fsijgj be the vector of i�s priority scores. These priority scores follow a simple and
transparent government rule and are known before application starts. In particular,

the priority score sij is determined by household characteristics, its home location and

the location of the school. Locations matter only up to whether or not the household

locates within the school zone a school belongs to. Let zl be the school zone that

contains location l; I
�
li 2 zlj

�
indicates whether or not household i lives in school j�s

zone. Household characteristics xi consists of two parts: demographics x0i and the

vector fsibijgJj=0 : Sibij = 1 (sibij = 0) if student i has some (no) sibling enrolled in
school j; if sibi0 = 1 then the student has some sibling enrolled in the outside option.

Priority score sij is given by

sij = x
0
i a+ b1I

�
li 2 zlj

�
+ b2sibij; (1)

where a is the vector of o¢ cial bonus points that applies to household demographics,

b1 > 0 is the bonus point for schools within one�s zone, and b2 is the bonus point

for the school one�s sibling is enrolled in.31 To reduce its own computational burden,

the administration stipulates that a student�s priority score of her �rst choice carries

over for all schools on her application list, which is common across the entire country

of Spain.32 We take this feature into account in our application. From (1) ; one can

notice that di¤erent households may have the same priority score to school j: If a

school is over-demanded, households are ranked �rst of all by their scores, and in

case of a tie, the tied households are ranked by random lottery numbers drawn after

households have submitted their applications.

31It follows from the formula that a student can have 2; 3 or 4 levels of priority scores, depending
on whether or not the school is in-zone or out-of-zone, whether or not one has sibling(s) in some
in-zone and/or out-of-zone schools. See the appendix for details.
32For example, if a student lists an in-zone sibling school as her �rst choice, she carries x0i a+b1+b2

for all the other schools she listed regardless of whether or not they are within her zone and whether
or not she has a sibling in those schools.

13



3.2.2 The Assignment Procedure: BM

Schools are gradually �lled up over rounds. There are R < J rounds, where R is also

the o¢ cial limit on the length of an application list.

Round 1: Only the �rst choices of the students are considered. For each school,

consider the students who have listed it as their �rst choice and assign seats of the

school to these students one at a time following their priority scores from high to low

(with random numbers as tie-breakers) until either there are no seats left or there is

no student left who has listed it as her �rst choice.

Round r 2 f2; 3; :::; Rg: Only the rth choices of the students not previously assigned
are considered. For each school with still available seats, assign the remaining seats

to these students one at a time following their priority scores from high to low (with

random lotteries as tie-breakers) until either there are no seats left or there is no

student left who has listed it as her rth choice.

The procedure terminates after any step r � R when every student is assigned a

seat at a school, or if the only students who remain unassigned listed no more than

r choices. A student who remains unassigned after the procedure ends can propose a

school that still has empty seats and be assigned to it.

One can use a triplet (rj; sj; cutj) to characterize the admissions probabilities to

each school j; where rj is the round at which j �lls up its slot (rj > R if j is a

leftover school), sj is the priority score for which lottery numbers are used to break

ties for j�s slots, cutj is the cuto¤ of the random lottery number for admission to

j. School j will admit any rth-round applicant before rj; any rthj -round applicant

with score higher than sj; and any rthj -round applicant with score sj and random

lottery higher than cutj; and it will reject any other applicant. Notice that, once the

random lottery numbers are drawn, admissions are fully determined. As mentioned

earlier, when making its application decision, a household knows its priority scores

but not its random number, which introduces uncertain admissions, i.e., probabilities

strictly between 0 and 1, for a household in many school-round cases. The assignment

procedure implies that the admissions probability is (weakly) decreasing in priority

scores within each round, and is (weakly) decreasing over rounds for all priority scores.

In particular, the probability of admission to a school in Round r + 1 for the highest

priority score is (weakly) lower than that for the lowest score in Round r:

14



3.3 Household Problem

We start with a household�s enrollment problem. After seeing the post-application

shock �i to its outside option and the assignment result, a household chooses between

the school it is assigned to and the outside option. Let the expected value of being

assigned to school j be vij; such that

vij = E�i max fuij; �ig : (2)

As seen from the assignment procedure, if rejected by all schools on its list, a house-

hold can opt for a school that it prefers the most within the set of schools that still

have empty seats after everyone�s applications have been considered. Label these

schools as �leftovers,�and i�s favorite �leftover�school as i�s backup. The value (vi0)

of being assigned to its backup school for household i is given by

vi0 = max fvijgj2leftovers : (3)

In the following, we describe a household�s application problem, in which it chooses

an ordered list of up toR schools. We do this separately for non-strategic and strategic

households.

3.3.1 Non-Strategic Households

A non-strategic household lists schools on its application form according to its true

preferences fvijgj : Without further assumptions, any list of length n (1 � n � R)
that consists of the ordered top n schools according to fvijgj is consistent with non-
strategic behavior, which makes the prediction of allocation outcomes ambiguous. To

avoid such a situation, we impose the following extra structure: suppose household i

ranks its backup school as its n�i -th favorite, then the length of i�s application list ni
is such that

ni � min fn�i ; Rg : (4)

That is, when there are still slots left on its application form, a non-strategic household

will list at least up to its backup school. We provide further discussion about this

assumption at the end of this subsection.

Let A0i =
�
a01; a

0
2; ::a

0
ni

	
be an application list for non-strategic (T = 0) household
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i, where a0r is the ID of the r
th-listed school and ni satis�es (4) : The elements in A0i

are given by

a01 = argmax
j
fvijgj (5)

a0r = argmax
j
fvijjj 6= ar0<rgj ; for 1 < r � min fn

�
i ; nig :

That is, the list reveals a household�s true preferences such that the rth-listed school

is its rth favorite school. This has to hold for all ni elements if the backup school

is ranked below n�i ; and for the �rst n
�
i schools if the backup school is ranked above

ni:
33 De�ne A0 (xi; �i; li) as the set of lists that satisfy (4) and (5) for a non-strategic

household with characteristics xi; location li and tastes �i. If n�i � R; the set A0 (�)
is a singleton, and the length of the application list ni = R: If n�i < R, all lists in

the set A0 (�) are identical up to the �rst n�i elements, and they all imply the same
allocation outcome for household i.

More about Condition (4) In order to predict allocation outcomes and to calcu-

late welfare, we need to predict the content of a household�s application list at least

up to the point beyond which listing any additional schools will not a¤ect the alloca-

tion outcome. Consider an application list of full length A0i = fa01; a02; ::a0Rg ; if none
of the R schools listed admits the household for sure in the round it is listed, then the

entire list is outcome-relevant. If some elements in A0i are such that i�s admissions

probability to a0r is 1 in Round r; then the list is outcome-relevant only up to its

r�-th element a0r�, where a
0
r� is the foremost-listed school that admits the household

for sure. To predict the outcome, we could impose a di¤erent condition labeled Con-

dition S (S for strong) that, when the list is incomplete, a non-strategic household

list at least up to a0r�. However, Condition S implicitly requires that a non-strategic

household know that its admissions probability to School a0r� in Round r
� is 1, which

involves a substantial amount of sophistication. In comparison, Condition (4) is a

much weaker requirement that a non-strategic household know which schools will be

leftovers and list at least up to its backup school. It requires far less sophistication

than to know the admissions probabilities by school and by round.34 One reason is

33Consistent with our assumption that a non-strategic household know that it has sure access to
its backup school, we do not require that schools listed after one�s backup school be ranked.
34In this model, we have assumed that it is free to �ll in the application and, if failing to be

assigned within R rounds, to propose a leftover school. Given the knowledge of the set of leftover
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the high persistence in whether or not a school was left over, which was true even

between the two years before and after the drastic re-de�nition of priority zones: 265

out of the 317 schools were either left over twice or never left over in the years of 2006

and 2007. Such high persistence makes it easy to predict the set of leftover schools.

Therefore, it may be reasonable to believe that even the non-strategic households may

have this (minimal) level of sophistication. With this weak requirement, Condition

(4) achieves the same goal as Condition S.35

3.3.2 Strategic Households

Strategic households are fully aware of the admissions probabilities in all rounds

and take them into account when applying for schools.36 A household�s expected

payo¤s depend not only on which schools it includes on its application list, but also

on how these schools are ordered.37 Therefore, the direct solution to this problem

involves choosing the best permutation from all possible ones out of the set of schools.

Formally, let P (J ;R) be the set of all possible permutations of size 1; 2; :::R out of

elements in J; and jP (J ;R)j be its size. An optimal list for a strategic household i
solves the following problem

max
A2P(J ;R)

� (A; Si; xi; li; �i) ; (6)

schools and that leftover schools have 100% admissions probabilities, a non-strategic household would
be indi¤erent between adding or not adding its backup school to an incomplete list. Condition (4)
speci�es that, if indi¤erent, a non-strategic household will add its backup school. It is also consistent
with a situation where the cost of proposing a leftover school after being rejected in all rounds is
higher than listing one more school to one�s list.
35To see why Condition (4) achieves the same goal as its much stronger counterpart, consider the

following exhaustive cases. Case 1: None of its R favorite schools admits the household for sure.
Both Condition S and Condition (4) require the same full list of length R: Case 2: At least one
of its R favorite schools admits the household for sure. By de�nition, a backup school admits the
student for sure and therefore r� � n�i : If r

� < n�i , i.e., the �rst sure-to-get school is preferrable
to the backup: lengthening the list to n�i will not change the outcome, because only the �rst r

�

elements are outcome-relevant. If r� = n�i ; then both conditions lead to the same list.
36We assume that strategic households have fully rational expectation of the admissions proba-

bilities because it is a clear baseline. As a justi�cation, the BM mechanism has been practiced in
Barcelona for over 20 years, which presumably has given households a lot of background information.
Nevertheless, a more �exible model would allow for some other groups, who are strategic but only
partially informed of the admissions probabilities. Such a model is a straight-forward extension to
our framework but will impose great challenges for identi�cation. We leave it for future work.
37Because admissions probabilities are score-school-round-speci�c, for a given household, the ad-

missions probabilities to a given school vary with where the household puts it on the application
list.
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where � (A; �) is the expected value yielded by list A: To the best of our knowledge,
choosing the best permutation out of all possible ones has been the method used in all

empirical studies on BM and other manipulable mechanisms, which has been feasible

because households studied in those papers face a small number of schools to choose

from. However, when the total number of schools J is relatively big and the length

limit R on the application list goes beyond 1; P (J ;R) soon becomes unmanageably

large. In the case of Barcelona, with J = 317 and R = 10, jP (J ;R)j is around
9� 1024:
Further examination of the allocation mechanism reveals two properties that have

not been explored in the literature. We utilize these two properties to develop a so-

lution method that fully solves the problem but in a much simpler way.38 The two

properties are:

(1) Sequentiality: Once the applications are submitted, students are allocated se-

quentially round by round.

(2) Limited Dependence: If rejected from all previous rounds, one�s probability of be-

ing allocated in the current round depends on one�s previous choices in a very limited

way. As a result, the continuation value of going to Round r onwards depends on

what are listed in the �rst r � 1 slots, but only in a very limited way.
In the following, we �rst explain our solution method for the simplest BM case,

where a household has one i.i.d. lottery number for each school, drawn from a uniform

distribution. In this case, Property (2) takes the extreme form of no dependence.

Then, we describe the method to solve for the BM case used in many cities, where

each household only has one random number drawn before Round 1 that is used in

all tie-breaking cases and rounds for this household. Finally, we solve our case where

both the lottery number and the priority score for the �rst round are used in all future

rounds.

Case 1) BM with No Dependence Let prj (Si) be the probability of being ad-

mitted to school j in Round r for a student with priority score Si, who listed j as

the rth application.39 Each household takes the vector of admissions probabilities

38To the best of our knowledge, our paper is the �rst to develop and use this solution method in
this literature.
39Notice that prj (Si) only depends on the j

th element of Si; i.e., one�s probability of getting
into school j in a particular round only depends on sij : However, we use this notation to avoid
complicated expressions (e.g., prar0

�
siar0

�
) later on.
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�
prj (Si)

	
j;r
as given, which depend only on Si � fsijgJj=1, not on one�s choices.40

As a result, given a vector of priority scores Si; the continuation value of going to

Round r onwards is independent of what are listed in the �rst r� 1 slots. Because of
sequentiality, even though the entire application list has to be submitted at once, the

solution can be feasibly derived by backward induction. In particular, if unassigned

in all R rounds, the continuation value is given by

V R+1 (Si; xi; li; �i) = vi0:

The value of being in Round r � R for household i with some priority score Si is

given by

V r (Si; xi; li; �i) = max
j2J

�
prj (Si) vij + (1� prj (Si))V r+1 (Si; xi; li; �i)

	
; (7)

s:t: prj (Si) =

8><>:
1 if r < rj or (r = rj and sij > sj);

1� cutj if r = rj and sij = sj;
0 otherwise,

where the second last line follows from the uniform distribution with support [0; 1].

An optimal list, denoted as A1i = fa1i1; :::a1iRg, can be derived starting from a1iR to a1i1;
where each a1ir is the argmax of (7) :

Compared to that of P (J ;R) ; the dimensionality of this backward induction

problem is drastically lower at J � R, i.e., choosing the best school out of J for R
times. Intuitively, the complexity involved in searching for a best permutation out of

P (J ;R) is the same as that in a backward induction where the value function V r (�)
depends on how all previous r � 1 choices are listed. However, as discovered earlier,
the nature of Case 1) is such that V r

�
far0gr�1r0=1 ; Si; xi; li; �i

�
= V r (Si; xi; li; �i) : Failing

to utilize sequentiality and limited dependence, the standard solution of searching for

the best permutation makes the problem unnecessarily complicated.

Case 2) BM with Constant Lottery Number When a household only has one

lottery number that is constant over rounds, correlation arises between admissions

40It is a widely used assumption in the literature that households are smaller players who take
admissions probabilities as given, e.g., Abdulkadiro¼glu, Che, and Yasuda (2011), Hat�eld, Kojima
and Narita (2014), Azevedo and Hat�eld (2015), Azevedo and Leshno (2015) and Agarwal and
Somaini (2015). See Kojima (2015) for a survey.
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probabilities across rounds. In particular, the fact that one is rejected by ar when

it belongs to the tied group reveals that its lottery number is below the threshold

cutar : Therefore, the probability of being admitted in Round r + 1 to other schools

conditional on being rejected by ar is lower than the unconditional probability. A

rational household should take this into account, even though it has to submit its

entire application list all at once. Formally, let �
r

i 2 [0; 1] be the upper bound of
one�s random number conditional on its rejection history (�

1

i = 1): This upper bound

becomes an additional state variable in the value function and prj (Si) should be ad-

justed to prj
�
Sij�

r

i

�
; such that

V r
�
Si; xi; li; �i; �

r

i

�
=

max
j2J

n
prj

�
Sij�

r

i

�
vij +

�
1� prj

�
Sij�

r

i

��
V r+1

�
Si; xi; li; �i; �

r+1

i

�o
(8)

s:t: �
r+1

i =

(
min

n
cutj; �

r

i

o
if sij = sj and r = rj;

�
r

i otherwise,
; (9)

prj

�
Sij�

r

i

�
=

8>><>>:
1 if r < rj or (r = rj and sij > sj)

max
n
0;

�
r
i�cutj
�
r
i

o
if r = rj and sij = sj;

0 otherwise.

(10)

Condition (9) is the updating rule for the state variable �
r+1

i . Upon rejection, which

occurs with probability 1 � prj
�
Sij�

r

i

�
; �

r+1

i decreases to min
n
cutj; �

r

i

o
if i belongs

to the tied priority group in Round r for school j, and it remains unchanged oth-

erwise. Notice that the choice of j conditional on �
r

i will fully determine �
r+1

i : The

second equality in the admissions probability rule (10) follows the truncated uniform

distribution with support
h
0; �

r

i

i
:

To describe an optimal list A1i = fa1i1; :::a1iRg, let air
�
�
r

i

�
be the argmax of

(8) given state variable �
r

i and �
r
i

�
�
r

i

�
be the �

r+1

i associated with air
�
�
r

i

�
: Given

that �
1

i 2 f1g ; the optimal choice for Round 1 (a1i1) is the argmax of (8) with �
1

i = 1:

For Round r > 1; a1ir is the argmax of (8) with �
r

i = �
r�1
i

�
�
r�1
i

�
.

Let Or � J be the subset of schools that have been �lled up by the beginning

of Round r (O for �out�), the size of which is given by jOrj �
PJ

j=1 I (r > rj) :

As shown in Appendix A3, the dimension of the problem in Case 2) is lower than

J
�
1 +

PR
r=2 jOrj

�
, which is in turn much smaller than jP (J ;R)j :
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Case 3) BM with Constant Lottery Number and Constant Priority Score
When the priority score of one�s top-listed school carries over to future rounds, the

continuation values for r > 1 will depend on the school listed for Round 1 (a1) via

the �rst element in the value function, i.e., the vector of priority scores now becomes

a vector of identical elements with sia11 = [sia1 ; :::; sia1 ] ; where 1 is a J-dimensional

vector of 1�s. With sia11 being the priority score vector, the problem for r > 1 remains

the same as described in (8) to (10). For Round 1, one solves the following problem

V 1
�
Si; xi; li; �i; �

1

i = 1
�
=

max
j2J

n
p1j (sij1j1) vij +

�
1� p1j (sij1j1)

�
V 2
�
sij1; xi; li; �i; �

2

i

�o
, (11)

s:t: Conditions (9) , (10) :

That is, the choice in Round 1 governs the vector of priority scores. An optimal list

can be described similarly as in Case 2). As shown in Appendix A3, the dimension of

the problem in Case 3) is smaller than J
�
1 + (R� 1) j
ij+

PR
r=2 jOrj

�
; where j
ij

is the number of di¤erent levels of priority scores Household i can have.41 Again, the

dimensionality is much lower than jP (J ;R)j :

Remark 3 There can be multiple optimal application lists yielding the same value.
Let A1 (xi; li; �i) be the set of optimal lists for a strategic household. All lists in

the optimal set, including the one derived by backward induction, are identical up

to the payo¤-relevant part of the lists and imply the same allocation outcome. For

example, consider a list A1 = fa11; :::; a1r; :::a1Rg ; by the speci�cation of fuijg ; each a1r
is generically unique if no school listed before it has a 100% admissions rate for the

household. However, if for some r < R; the admissions rate for the rth listed school

is one, then any list that shares the same �rst r ordered elements is also optimal. See

the appendix for other cases.

41Recall that a household can have several levels of priority scores, j
ij 2 f2; 3; 4g, depending on
whether or not one has siblings enrolled in the system and whether one�s siblings�schools are in or
out of one�s school zone.
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4 Estimation

4.1 Further Empirical Speci�cation

4.1.1 Utility Function

As described in detail in Appendix B1, the utility function (net of individual tastes)

takes the following form

U (wj; xi; dij; �j) = �1I (single parent) + �2 (sibij� sibi0)� C (dij) (12)

+
3X
e=1

(�0e + �1e�j + wj�e) I (edui = e) :

The �rst line of (12) speci�es the part of utility that varies systematically across

households even conditional on education. �1 captures the possible di¤erential eval-

uation of the public system by single parents. �2 is the utility from enrolling in the

same school as one�s older sibling: �2 is added to i�s evaluation of j if a sibling is

enrolled in j; �2 is subtracted from i�s evaluation of all schools in the system if a

sibling is in the outside option and hence making the outside option more attractive.

C (dij) is a non-linear distance cost function. The second line of (12) speci�es the part

of utility that varies systematically across households with di¤erent education levels

edui 2 f1; 2; 3g. In particular, we allow for households of di¤erent education levels to
have di¤erent views of the public system via �0e, school observable characteristics via

�e and unobservable characteristics via �1e, with �02 = 0; �12 = 1 normalized for the

middle-education group.42

4.1.2 Unobserved School Characteristics

We still need to specify the relationship between the unobserved school characteristics

�j and the observable ones wj. It is more realistic to allow for correlation between

�j and wj; rather than assuming that they are orthogonal. As a result, estimates of

� in (12) may be inconsistent. However, one can combine the e¤ects of (wj; �j) and

42The vector of school observable characteristics that enters the utility function consists of quality,
quality2; capacity, capacity2; tuition and an indicator of semi-public school.
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rewrite the second line of (12) asX
e

(�0e + �1e�j + wj�e) I (edui = e) : (13)

The reduced-form parameters � and f�jgj can be consistently estimated; and each of
them is some combination of the structural parameters �; � and �:43 For the goal of

this paper, it is su¢ cient to estimate �, f�jgj and all structural parameters except �
and �:

Remark 4 Given our model speci�cation, households� evaluations for schools, i.e.,
(12) and (13) ; are invariant to our counterfactual policy changes, which means it

is unnecessary to recover � and � in order to conduct counterfactual experiments.

Because of this fact and because our data do not contain proper instrumental variables

for us to disentangle the e¤ects of wj and �j; our estimation will recover �, f�jgj and
all structural parameters except � and �. As a cost, we may not be able to consistently

translate the unit of welfare from utils to units of school characteristics, e.g., euros

(the tuition unit).

4.2 Likelihood

The model is estimated via the simulated maximum likelihood estimation method.

The estimates of the model parameters should maximize the probability of the ob-

served application and enrollment outcomes conditional on household observables

(xi; li), school observables (wj; lj), and student-school assignments.44 Denote the vec-

tor of model parameters as � � [�u;�T ] ; where �u is the vector of parameters that
govern household preferences, and �T is the vector of parameters that govern the

distribution of household types. In particular, �u is composed of 1) the parameters

that enter the �rst line of (12), 2) the school e¤ect parameters �; � and f�jgj, 3) the
dispersion of household tastes for schools ��; and 4) the dispersion of post-application

shocks to the value of the outside option ��.

Let Oi �
h eAi; eeijejii be the observed outcomes for household i; where eAi is the

observed application list, eji is the school student i was assigned to, and eei is the
43In particular, �j � �j + �2wj ; �e = �e � �1e�2 for e = 1; 3; and �2 = 0:
44Notice that given applications, student assignment is a mechanical procedure that does not

depend on parameters of the model, so it does not contribute to the likelihood per se.
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observed enrollment decision given eji as the school i was assigned to. Recall that a
household can either enroll in the assigned school or choose the outside option, henceeei = I (enroll) ; where I (�) is the indicator function.
Conditional on being type T , the probability of observing Oi is given by

LTi (�u) =

Z 8<: I
� eAi 2 AT (xi; li; �i; �u)

�
�heei��uiej(�u)+�ieji��

�
+ (1� eei)�1� ��uiej(�u)+�ieji��

��i
9=; dF� (�;��) ;

where AT (xi; li; �i; �u) is the set of model-predicted optimal application lists for a

type-T household with (xi; li; �i). uiej (�u) is the model-predicted utility of attending
School eji; net of individual taste. ��uiej(�u)+�ieji��

�
is the model-predicted probability

that this household will enroll in eji; which happens if only if the post-application
shock to the outside option is lower than the utility of attending eji.
To obtain household i�s contribution to the likelihood, we integrate over the type

distribution

Li (�) = �(xi; li; �T )L
1
i (�u) + (1� �(xi; li; �T ))L0i (�u) :

Finally, the total log likelihood of the whole sample is given by

L (�) =
X
i

ln (Li (�)) :

4.3 Identi�cation

We give an overview of the identi�cation in this subsection and leave the formal proof

in Appendix B2. The identi�cation relies on the following assumptions.

IA1: There does not exist a vector of household observable x and a school j; such

that all households with x have probability zero of being admitted to school j.

IA2: Household tastes � are drawn from an i.i.d. unimodal distribution, with mean

normalized to zero. Tastes are independent of school characteristics, household ob-

servables (x; l) and household type (T ) :

IA3: At least one continuous variable in the utility function is excluded from the type

distribution. Conditional on variables that enter the type distribution function, the

excluded variable is independent of household type T:

To illustrate the identi�cation challenge, consider a situation where each household
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only applies to one school, which is a less favorable situation for identi�cation because

we would have less information, and suppose there is no post-application shock.45 If

all households are non-strategic, the model boils down to a multinomial discrete choice

model with a household choosing the highest uij (�u)+ �ij. The identi�cation of such

models is well-established under very general conditions (e.g., Matzkin (1993)). If all

households are strategic, the model is modi�ed only in that a household considers

the admissions probabilities fpijgj and chooses the option with the highest expected
value.46With fpijg observed from the data, this model is identi�ed with the additional
condition IA1, which requires that for any x; the expected value of applying for

school j is nondegenerate:47 The challenge exists because we allow for a mixture of

both types of households. In the following, we �rst explain IA2-IA3, then give the

intuition underlying the identi�cation proof.

4.3.1 IA2 and IA3 in Our Framework

We observe application lists with di¤erent distance-quality-risk combinations with

di¤erent frequencies in the data. The model predicts that households of the same

type tend to make similar application lists. Given IA2, the distributions of type-

related variables will di¤er around the modes of the observed choices, which informs

us of the correlation between type T and these variables. IA3 guarantees that di¤erent

behaviors can arise from exogenous variations within a type. To satisfy IA3, we need to

make some restrictions on how household observables (xi; li) enter type distribution

and utility. Conditional on distance, a non-strategic household may not care too

much about living to the left or the right of a school, but a strategic household may

be more likely to have chosen a particular side so as to take advantage of the priority

zone structure.48 However, given that households, strategic or not, share the same

preferences about school characteristics and distances, there is no particular reason

to believe that everything else being equal, the strategic type will live closer to a

45The post-application shock is identi�ed from the observed allocation and enrollment outcomes.
46Agarwal and Somaini (2015) show conditions under which one can nonparametrically identify

household preferences when all of them are strategic.
47If for all households with x; the admissions probabilities to j are zero, the utility for school j

for these households is unidenti�able, because the expected value of applying to j is zero regardless
of the level of utility.
48Without directly modeling households�location choices, we allow household types to be corre-

lated with the characteristics of the school zones they live in. We leave the incorporation of household
location choices for future extensions.
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particular school than the non-strategic type would just for pure distance concerns.

In other words, because the only di¤erence between a strategic type and a non-

strategic type is whether or not one considers the admissions probabilities, which are

a¤ected by one�s home location only via the zone to which it belongs to, we assume

that home location li enters the type distribution only via the school zone zli, i.e.,

� (xi; li) = � (xi; zli) :

In contrast, household utility depends directly on the home-school distance vector di.

Conditional on being in the same school zone, households with similar characteristics

x but di¤erent home addresses still face di¤erent home-school distance vectors d, as

required in IA3.

4.3.2 The Intuition for Identi�cation

Conditional on (x; zl) ; the variation in d induces di¤erent behaviors within the same

type; and conditional on (x; zl; d) ; di¤erent types behave di¤erently. In particular,

although households share the same preference parameters, di¤erent types of house-

holds will behave as if they have di¤erent sensitivities to distance. For example,

consider households with the same (x; zl) and a good school j out of their zone zl. As

the distance to j decreases along household addresses, more and more non-strategic

households will apply to j because of the decreasing distance cost. However, the re-

actions will be much less obvious among the strategic households, because they take

into account the risk of being rejected, which remains unchanged no matter how close

j is as long as it is out of zl. The di¤erent distance-elasticities among households

therefore inform us of the type distribution within (x; zl).49 This identi�cation ar-

gument does not depend on speci�c parametric assumptions. For example, Lewbel

(2000) shows that similar models are semiparametrically identi�ed when an IA3-like

excluded variable with a large support exists. However, to make the exercise feasible,

we have made speci�c parametric assumptions.50 Appendix B2 shows a formal proof

49Although our identi�cation does not rely on the following extreme case, one can also take the
argument to the case of households along the border of two zones. Were all households non-strategic,
applications should be very similar among households along both sides of the border. In contrast,
were most households strategic, the sets of schools they apply for would be very di¤erent between
the two sides of the border.
50We have to use parametric assumptions because semiparametric estimation is empirically infea-

sible, and because the support of d is bounded by the size of the city, which is not large enough
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of identi�cation given IA1-IA3 and these additional speci�cations.

The argument above focuses on the special excluded variable d, but one can obtain

further information for identi�cation by comparing the observed households�choices

with schools they did not choose, in terms of observable factors such as distance,

quality and fees. Due to unobserved school characteristics, some seemingly good

schools may in fact be unattractive, making it not as popular as it �should have been�

among most households. Controlling for such common factors, a household may still

leave out of its list some schools that seem to be better than its chosen ones due

to unobserved tastes. IA2 implies that tastes are independent of household-school-

speci�c admissions probabilities. Therefore, idiosyncratic preferences should not lead

to a systematic relationship between a household�s choice of not listing a school and

its chance of getting into that school. However, as will be shown in Section 5, the

left-out schools for most households in our data were disproportionally unlikely to be

those the households had good chance to get into. Such behavior is highly consistent

with strategizing instead of truth-telling.

4.3.3 Obviously Non-Strategic Households

The identi�cation of our model is further facilitated by the fact that we can partly ob-

serve household type directly from the data: there is one particular type of �mistake�

that a strategic household will never make, which is a su¢ cient (but not necessary)

condition to spot a non-strategic household. Intuitively, if a household�s admissions

status is still uncertain for all schools listed so far, and there is another school j it

desires, it never pays to waste the current slot listing a zero-probability school in-

stead of j because the admissions probabilities decrease over rounds.51 The idea is

formalized in the following claim and proved in the appendix.52

Claim 1 An application list with the following features is su¢ cient but not necessary
evidence that the household must be non-strategic: 1) for some rth element ar on the

relative to the (unbounded) support of household tastes, as required in Lewbel (2000).
51Abdulkadiro¼glu, Pathak, Roth and Sönmez (2006) use a mistake similar to Feature 1) in Claim

1 to spot non-strategic households, which is to list a school over-demanded in the �rst round as one�s
second choice.
52If the support of household characteristics is full conditional on being obviously non-strategic,

household preferences can be identi�ed using this subset of households without IA1, since � is
independent of (x; l) : However, our identi�cation is only faciliated by, not dependent on the existence
of obviously non-strategic households.
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list; the household faces zero admissions probability at the rth round, and 2) it faces

admissions probabilities lower than 1 for all schools listed in previous rounds; and 3)

it faces a positive but lower than 100% admissions probability for the school listed in

a later slot r00 � r + 1 and no school listed between ar and ar00 admits the household
with probability 1:

5 Data

Our analysis focuses on the applications among families with children that turned

3 years old in 2006 or 2007 and lived in Barcelona. For each applicant, we observe

the list of schools applied for, the assignment and enrollment outcomes. We also

have information on the applicant�s home address, family background, and the ID

of the school(s) her siblings were enrolled in the year of her application. For each

school in the public school system, we observe its type (public or semi-public), a

measure of school quality, school capacity and the level of service fees. The �nal

data set consists of merged data sets from �ve di¤erent administrative units: the

Consorci d�Educacio de Barcelona (local authority handling the choice procedure in

Barcelona), Department d�Ensenyament de Catalunya (Department of Education of

Catalunya), the Consell d�Avaluacio de Catalunya (public agency in charge of evalu-

ating the Catalunya educational system), the Instituto Nacional de Estadistica (na-

tional institute of statistics) and the Institut Catala d�Estadistica (statistics institute

of Catalunya).53

5.1 Data Sources

From the Consorci d�Educacio de Barcelona, we obtain access to every applicant�s

application form, as well as the information on the school assignment and enrollment

outcomes. An application form contains the entire list of ranked schools a family

submitted. In addition, it records family information that was used to determine the

priority the family had for various schools (e.g., family address, the existence of a

sibling in the �rst-ranked school and other relevant family and child characteristics).

The geocode in this data set allows us to compute a family�s distance to each school

53These �ve di¤erent data sources were merged and anonimized by the Institut Catala
d�Estadistica (IDESCAT).
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in the city.

From the Census and local register data, we obtain information on the applicant�s

family background, including parental education and whether or not both parents

were registered in the applicant�s household. Since information on siblings who were

not enrolled in the school the family ranked �rst is irrelevant in the school assignment

procedure, it is not available from the application data. However, such information

is relevant for family�s application decisions. From the Department of Education, we

obtained the enrollment data for children aged 3 to 18 in Catalunya. This data set

is then merged with the local register, which provides us with the ID of the schools

enrolled by each of the applicant�s siblings at the time of the application.

To measure the quality of schools, we use the external evaluation of students

conducted byConsell d�Avaluacio de Catalunya. Since 2009, such external evaluations

have been imposed on all schools in Catalunya, in which students enrolled in the last

year of primary school are tested on math and language subjects.54 From the 2009

test results that we obtained, we calculated the average test score across subjects for

each student, then use the average across students in each school as a measure of the

school�s quality.55 Finally, to obtain information on the fees charged by semi-public

schools (public schools are free to attend), we use the survey data collected by the

Instituto Nacional de Estadistica.56

5.2 Admissions Thresholds and Sample Selection

It is well-known that BM can give rise to multiple equilibria, which can greatly com-

plicate the estimation of an equilibrium model.57 However, assuming each household

is a small player that takes the admissions thresholds, hence admissions probabili-

ties, as given, we can recover all the model parameters by estimating an individual

decision model. This is possible because the assignment procedure is mechanical

54As mentioned in the background section, a student has the priority to continue her primary-
school education in the same school (with the same capacity) she enrolled for preschool education,
which makes it very unlikely that one can transfer to a better school between preschool-primary
school transition. For example, at least 94% of the 2010 preschool cohort were still enrolled in the
same school for primary school education in 2013.
55Following the same rule used in Spanish college admissions, we use unweighted average of scores

across subjects for each student.
56See http://www.idescat.cat/cat/idescat/publicacions/cataleg/pdfdocs/dossier13.pdf for a sum-

mary of the survey data.
57He (2012) did not detect multiple equilibria in his simulations and hence estimated the equilib-

rium model assuming uniqueness.
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and because we observe the applications and assignment results for all participating

families, which we use to simulate the triplet (rj; sj; cutj) for each school as follows.

Taking the observed applications and the priority rules in Barcelona as given, we

make 1,000 copies for each observed application list and assign each copy a random

lottery number. We simulate the assignment results in this enlarged market (1,000

times as big as the observed market), which yields (rj; sj; cutj) for each school. The

simulated admissions thresholds are treated as the ones that the households expected

when they applied.

In 2006, 11,871 Barcelona households participated in the application for schools in

the Barcelona public school system. After we calculated the admissions probabilities

using the entire sample, we select the estimation sample as follows. We drop 3,152 ob-

servations whose home location information cannot be consistently matched with the

GIS (geographic information system) data, for example, due to typos.58 We exclude

191 families whose children have special (physical or mental) needs or who submitted

applications after the deadline, the latter were ineligible for assignment in the regular

procedure. We drop 31 households whose applications, assignment and/or enrollment

outcomes are inconsistent with the o¢ cial rule, e.g., students being assigned to over-

demanded schools they did not apply for. Finally, we delete observations missing

critical information such as parental education and the enrollment information of the

applicant�s older sibling(s).59 The �nal sample size for estimation is 6,836.

5.3 Summary Statistics

There were 158 public schools and 159 semi-public schools in our sample period.

Table 1 summarizes school characteristics separately for the two groups of schools.

The �rst row summarizes school quality as measured by the average test scores of

58We know the priority scores these households had for schools on their application list, which
enables us to include these households in the calculation of the overall admissions probabilities.
59Our model distinguishes between high-school education and college eduation. Therefore, the

observations excluded from the estimation sample include 748 parents who reported their education
levels as �high school or above.�In policy simulations, however, we do include this subsample and
simulate their application behaviors in order to be able to conduct the city-wise assignment under
alternative mechanisms. We interpolate the probability of each of these 748 households as being
high school or college educated by comparing them with those who reported exactly high-school
education or college education. We estimate the probabilities via a �exible function of all the other
observable characteristics, such as gender, residential area, age, number of children etc. The model
�t for this subsample is as good as that for the estimation sample, available on request.
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students in each school.60 The average quality of public schools is 7.4 with a standard

deviation of 0.8. Semi-public schools have higher average quality of 8.0 and a smaller

dispersion of 0.5. Although public schools are free to attend, semi-public schools

charge on average 1,280 euros per year with a standard deviation of 570 euros. The

average capacity for the incoming 3-year-old students in public schools is 1.4 classes,

as compared to 1.8 in semi-public schools.

Table 1 School Characteristics

Public Semi-Public All

Quality 7.4 (0.8) 8.0 (0.5) 7.7 (0.7)

Fees (100 Euros) 0 12.8 (5.7) 6.4 (7.5)

# Classes 1.4 (0.5) 1.8 (1.0) 1.6 (0.8)

Observations 158 159 317

Table 2 summarizes the household characteristics of the 2006 estimation sample.

Among all households, about 30% parents had less than high school education and

about 40% had college education.61 For about 15.8% of the sample, only one parent

was registered in the applicant�s household. We refer such households as �single

parent�households throughout the paper. Over 42% of applicants had at least one

older sibling enrolled in some preschool or primary school in 2006, almost all of

these older siblings were enrolled in the Barcelona public school system (40.7% out

of 42.2%). Depending on their home locations, the numbers of schools for which

households had priorities were di¤erent, so was the average quality of these schools.

On average, a household had priority for 22 schools in 2006 with a standard deviation

of almost 8 schools. The average quality of schools within one�s priority zone was 7.8

and the cross zone dispersion was 0.3.

60We measure test scores on a scale from 0 to 10, distance in 100 meters and tuition in 100 euros.
61Following the literature on child development, we use mother�s education as the de�nition of

parental education if the mother is present in the household, otherwise, we use the father�s education.

31



Table 2 Household Characteristics

Parental Edua< HS 29.8%

Parental Edu = HS 30.4%

Parental Edu > HS 39.8%

Single Parent 15.8%

Have school-age older sibling(s) 42.2%

# Schools in Zone 22.3 (7.9)

Average school quality in zone 7.8 (0.3)

Observations 6,836
aParental Edu: mother�s edu if she is present, otherwise father�s edu.

Table 3 shows the number of schools households listed on their application forms.

Households were allowed to list up to 10 schools, but most of households listed no

more than 3 schools, with 47% of households listing only one school. Across di¤erent

educational groups, parents with lower-than-high-school education were more likely to

have a shorter list, while parents with exact high school education tended to list more

schools than the others. Single parents also tended to list more schools compared to

both-parent households.

Table 3 Number of Schools Listed (%)

1 2 3 4 or more

All 46.9 12.4 16.9 23.8

Parental Edu < HS 49.8 15.0 19.5 15.7

Parental Edu = HS 43.4 12.1 18.4 26.2

Parental Edu > HS 47.4 10.6 13.9 20.1

Single-Parent 43.3 14.7 16.8 25.2

Table 4 shows the round at which households were assigned. By de�nition, a

household was assigned to its rth listed school if it was assigned in round r; and

remained unassigned if it failed to get in any of its listed schools. Ninety three

percent of households were assigned in the �rst round; 2.8% were assigned in the

second round and 2.7% were unassigned. Across educational groups, college-educated

parents were most likely to be assigned to their �rst choices (93.7%), followed by

the lowest educational group. Comparing across all education groups, the middle-

education group had the lowest fraction of households assigned to their �rst choices
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and the lowest fraction assigned within 10 rounds. Single parents were more likely to

be assigned to their �rst choice compared to their counterpart.

Table 4 Assignment Round (%)

1st 2nd 3rd-10th Unassigned

All 93.0 2.8 1.5 2.7

Parental Edu < HS 93.2 2.7 1.6 2.5

Parental Edu = HS 92.0 3.5 1.5 3.0

Parental Edu > HS 93.7 2.3 1.3 2.7

Single-Parent 94.0 1.9 1.4 2.7

Although as an equilibrium outcome, most households were assigned to their �rst

choices, it does not imply that there was little or no risk involved in the application

process.62 Among those assigned to their �rst choices, the average admissions prob-

ability was 94.6%, with the lowest admissions probability being 0.2. Moreover, the

entire set of 317 schools was mainly divided into two groups (Table 15). The �rst

group, accounting for 44% of all schools, were �lled up in Round 1, of which 84%

rejected some applicants in that round. The second group, accounting for 40% of

all schools, were leftover schools. These �gures point to the high stakes households

were faced with. A large number of schools were over-demanded; and once rejected

in Round 1, most schools one could get into were leftovers. The fact that most house-

holds were assigned to their �rst choices seems to suggest both the prevalence of

strategic play and a large amount of coordination in equilibrium.

Given that most households were assigned to their �rst choices, Table 5 summa-

rizes the characteristics of the top-listed schools. For all students, the average quality

of the top-listed schools was 7.9. The home-school distance was about 710 meters.

The distance-quality trade-o¤s seem to di¤er across educational groups: as parental

education goes up, the quality of top-listed schools increases while the distance de-

creases. Single parents were more likely to top-list a school with higher quality yet

longer distance, compared to an average household.

62The fact that most households are assigned to their �rst choices under BM and other manip-
ulable mechanisms has been found in other studies using data from di¤erent cities/countries, e.g.,
Abdulkadiro¼glu, Pathak, Roth and Sönmez (2006), Hastings, Kane and Staiger (2009), Lavy (2010)
and Agarwal and Somaini (2015).
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Table 5 Top-Listed Schools

Quality Distance (100m) Fees (100Euros)

All 7.9 (0.6) 7.1 (8.7) 8.1 (7.7)

Parental Edu < HS 7.6 (0.7) 5.2 (6.2) 5.4 (6.6)

Parental Edu = HS 7.9 (0.5) 7.0 (8.6) 8.1 (7.5)

Parental Edu > HS 8.2 (0.4) 8.7 (9.9) 9.9 (8.1)

Single-Parent 8.0 (0.6) 8.1 (9.9) 8.6 (8.4)

Table 6 �Better�Schools than the Top-Listed One

% Households # Better Sch %Better w/ Higher p

All Households (6,836)

Have Sch. Better in 3 Aspects 40.7% 5.2 (9.9) 14.1%

Have Sch. Better in 2 Aspects 99.8% 75.9 (45.1) 10.5%

Sib Sch. not Top-listed (4,025)

Have Sch. Better in 3 Aspects 39.3% 4.6 (8.7) 24.8%

Have Sch. Better in 2 Aspects 99.8% 77.3 (44.2) 17.8%

% Households: % of households that satisfy the condition speci�ed in each row.

#Better Sch: average (std.dev.) num. of better schools for households with such schools.

%Better w/ higher p: % of better sch with higher admission prob. than one�s top choice.

To show some suggestive evidence of strategic behavior, we compare a household�s

top-listed schools with other schools in terms of quality, tuition and distance. A school

is labeled as �better�than the top-listed school for the speci�c household in all three

aspects if it had higher quality, lower tuition and shorter home-school distance. It

is labeled as �better�in two aspects if it failed to meet one of the three conditions.

The upper panel of Table 6 shows that, of all 6,836 households in the sample, 41%

had at least one school that was better in 3 aspects. Among these households, the

average number of such better schools was 5.2 (standard deviation of 9.9). Almost all

households had some schools better than their top choices in 2 aspects, with the av-

erage number of such schools being 76.63 Of course, households�unobservable tastes

and/or unobserved school characteristics may drive households�top choice over these

seemingly better schools. However, these unobservables are far from su¢ cient. First,

comparing these household-speci�c �better�schools across households, we �nd very

63Appendix Table A1 provides more detailed descriptions of schools better in speci�c pair of
aspects.
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limited, if any, overlapping, which suggests that school unobservables played a very

limited role.64 Second, these �better� schools were disproportionally unlikely to be

schools for which the household had higher admissions probabilities. For example,

for each of the 2,783 households that had some schools better than their top choices

in 3 aspects, we calculate the fraction of these better schools for which the household

had higher admissions probabilities than its top choice. On average, this fraction

was only 14% (last column of Table 6). Similar statistics is reported in the sec-

ond row, where only 10% of schools that were better in 2 aspects also had higher

admissions probabilities than one�s top choice. Such patterns are hard to rational-

ize with truthful reporting, unless households�unobserved tastes vary directly with

the household-speci�c admissions probabilities. To address the concern that sibling

schools may be a dominant factor in one�s application decisions, the lower panel of

Table 6 restricts attention to the 4,025 households who did not top-list a sibling school

(4,011 of them did not have a sibling school). The same pattern persists: there ex-

isted �better�schools than the top-listed ones, and they were very unlikely to be the

ones with higher admissions probabilities, which is consistent with strategic behavior

rather than truth telling. Together with the rest of schools listed on one�s applica-

tion list, the fact that households systematically avoided �better� schools with low

admissions probabilities as their �rst choices provides information for us to identify

the distribution of household strategic types and that of their preferences.

Table 7 lists the fraction of all students, assigned or unassigned, who were enrolled

in the public school system (recall that a household can propose a school with an

available seat and be assigned to it after the regular admissions if the household

remains unassigned to any of its listed schools). Overall, 97% of applicants were

enrolled in the public school system. Applicants with college-educated parents and/or

single parents were less likely to enroll. The last row shows that 2.2% of households

chose not to enroll even though they had been assigned to their �rst choice. The ex-

post shocks introduced in the model are meant to rationalize such behaviors. Finally,

Table A2 in the appendix shows that the probabilities of being assigned in Round

1 were lower for applicants who did not enroll in the public system than for those

who did, suggesting that households who took higher risks might have better outside

options.

64Detailed report available upon request.
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Table 7 Enrollment in Public System (%)

All 96.7

Parental Edu < HS 97.0

Parental Edu = HS 97.1

Parental Edu > HS 96.3

Single-Parent 96.1

Assigned in Round 1 97.8

6 Results

6.1 Parameter Estimates

Table 8 presents the estimated parameters governing household preferences. The left

panel reports the structural parameters (standard errors in parentheses) that govern

the parts of utility function that vary within the same education group, the dispersion

of tastes and that of post-application shocks. The linear preference parameter on

distance is normalized to -1.65 The cost of distance is convex with the square term

being 0.05, although not precisely estimated. In addition, we allow for two jumps

in the cost of distance. The �rst jump is set at 500 meters, which is meant to

capture an easy-to-walk distance even for the 3-year old. Another jump is at the 1

kilometer threshold, which is a long yet perhaps still manageable walking distance.

As households may have to rely on some other transportation methods when a school

is beyond walking distances, it is not surprising to see that the cost of distance jumps

signi�cantly at the thresholds, by about 5.5 kilometers at the �rst threshold and

by another 4.6 kilometers at the second. The next row shows that it is especially

attractive for a household to send the child to the same school where her older sibling

was enrolled in. This parameter adjusts such that most (97%) but not all households

with sibling schools top-listed such schools. Compared to both-parent households,

single parent households value schools in the public system less. The last two rows

on the left panel show, respectively, the dispersion of household preferences across

schools and that of post-application shocks.66 The ex-ante value of the outside option

65As in other discrete choice models, we need to normalize one coe¢ cient in the utility function
in order to identify the �� and ��:
66Households take expectations over these ex-post shocks when applying, thus application provides

another bene�t, i.e., an option value.
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is normalized to zero, while the average value of schools (�j) is estimated to be

3,391. Therefore, a relatively large shock is necessary for a household to give up the

assigned public school, especially if it is the household�s �rst choice. The variance of

the idiosyncratic tastes is relatively small, which is consistent with households�low

willingness to take risks (Table 6).

Table 8 Preference Parameters

Structural Parameter Estimatesa Summarize School FEb

Edu < HS Edu = HS Edu > HS

Distance2 -0.05 (0.04) Constant 2766.3 2783.3 2423.0

Distance>5 (100m) -55.3 (7.1) Quality 152.0 176.4 187.8

Distance>10 (100m) -46.5 (7.9) Fee -1.0 -0.6 -0.3

Sibling School 1339.0 (86.5) Semi-Public -0.6 6.5 0.8

Single Parent -404.3 (12.2) Capacity 0.7

��(taste dispersion) 66.3 (6.2) Capacity2 -0.001

��(post-app shock) 1937.8 (18.7) Quality2 -9.9
aStructural preference parameter estimates.
bOLS regression of the estimated school value parameters on observables.

It will be overwhelming yet non-informative to directly report the over 300 pa-

rameter estimates (�j) related to school values.67 Instead, we run an OLS regres-

sion of school value parameter estimates on observable characteristics as a summary.

The form of the OLS regression follows the structural model speci�cation in Section

4.1.2 and Appendix B1. The right panel of Table 8 reports the results. These OLS

estimates will be unbiased only if the unobserved school characteristics are uncor-

related with the observable ones.68 As mentioned earlier, this potential correlation

does not a¤ect our analyses and counterfactual experiment results, which use the

consistently-estimated school values. However, caveats should be taken when relat-

ing school values and/or welfare to school characteristics (fees, quality and capacity).

With these caveats, the right panel reveals the following messages, all of which line

up with our intuition. 1) Across the three education groups (less than high school,

high school, above high school), the middle group values schools within the public

67The estimates and standard errors of these parameters are available upon request.
68Because these OLS estimates are used only to summarize the school values and because they

are subject to biases, their standard errors are not reported.
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school system more than the other two groups, especially the college-educated group.

One explanation is that college-educated parents are more likely to be able to a¤ord

a costly outside option. These numbers are consistent with the observed behaviors.

For example, Table 5 and Table 7 show that although college-educated parents and

single parents were more likely to be assigned to their top choices, they were less

likely to enroll their children in the public school system. 2) Higher educated parents

value school quality more, and are less sensitive to fees.69 Our �ndings that parents of

di¤erent education levels di¤er in their views of the trade-o¤s among quality, fees and

distance are consistent with those in the literature.70 3) Households prefer schools

with larger capacity, which is consistent with the fact that larger schools tend to have

more resources and lower close-down risks. 4) Everything else being equal, semi-public

schools are more preferable except for the low-educated group, presumably because

such schools have more �exibility than government-run public schools.

Table 9 presents the estimated parameters governing the probability that a house-

hold is strategic, which takes a logistic functional form. Single parents and parents

with higher education levels are more likely to be strategic. We do not �nd that

strategic households are more likely to live in zones with more schools, and in fact,

the coe¢ cient is slightly negative. However, we do �nd that strategic households are

more likely to live in zones with higher average school quality.71 Households with

older children, which have already gone through the admissions process before, are

more likely to be strategic.72

69Preferences for quality peak beyond the maximum quality in the data for the college-educated
group, at 99th percentile for the middle-educated group, and around 60th percentile for the lowest-
educated group.
70For example, Burgess et al (2009), Hastings, Kane and Staiger (2008), He (2012) and Abdulka-

diro¼glu, Agarwal and Pathak (2014).
71We allow for the correlation between zone characteristics and types. The �nding that strategic

households are more likely to live in better zones is consistent with our intuition that strategic house-
holds may choose home locations to utilize the residence-based priority structure. However, without
modeling residential choices, we cannot interpret this correlation as causation in any direction.
72One interesting extension of our model is to incorporate the dynamic considerations households

with multiple children may have.

38



Table 9 Type Distribution

Constant -18.9 (2.3)

Single Parent 0.3 (0.5)

Education < HS -0.1 (0.2)

Education > HS 0.7 (0.3)

No. schools in zone -0.1 (0.2)

Average school quality in zone 3.1 (1.1)

Have an older sibling 49.0 (24.7)

Based on the estimates in Table 9, Table 10 shows the simulated type distribution

in our sample. Consistent with data facts such as those in Table 6, the left panel shows

that 96% of all households were strategic, i.e., very few households applied without

considering the odds of being admitted.73 As education level goes up, the fraction

of strategic households grows from 95% to 98%. Households with single parents and

those with older children were both more likely to be strategic. The upper-right panel

of Table 10 shows the average characteristics of the zones in which di¤erent types of

households lived. On average, strategic (non-strategic) households lived in zones with

22.3 (21.8) schools and the average quality of these schools was 7.9 (7.7).

Table 10 Strategic vs. Non-Strategic Type: Simulation

Strategic (%) Strategic Non-Strategic

All 96.3 Schools in zone

Parental Edu < HS 94.7 No. Schools 22.3 21.8

Parental Edu = HS 95.8 Ave. quality 7.9 7.7

Parental Edu > HS 97.8

Single-Parent 96.6

Have an older sibling 97.1

6.2 Model Fits and Out-of-Sample Validation

The 2007 re-de�nition of priority zones abruptly changed the school-household-speci�c

priorities. For example, the number of schools to which a household had priority

73We �nd a much smaller fraction of non-strategic households than Abdulkadiro¼glu, Pathak, Roth
and Sönmez (2006) did. The main reason is our incorporation of the outside option and the leftover
schools into the framework, which rationalizes the choices by a substantial fraction of households
that might be categorized as non-strategic otherwise. Another reason is the long (over 20 years)
practice of BM in Barcelona, where parents have become very familiar with the mechanism.
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became 7.0 on average with a standard deviation of 1.5 in 2007, as compared to the

22.3 (7.9) �gure in 2006. More importantly, the priority schools became those that

surrounded each home location, which also changed the risk-quality-distance trade-

o¤s faced by households. In this section, we show the model �ts for both the 2006 and

the 2007 samples.74 To simulate the 2007 outcomes, we �rst calculate the admissions

probabilities in 2007 via the same procedure as we do for the year 2006, using the entire

2007 sample. Then we use the selected 2007 sample of 7,437 households to conduct

an out-of-sample validation, where the sample selection rule is the one used for the

2006 sample.75 To the extent that the change came as a surprise to households, it is

reasonable to believe households had been unable to relocate before submitting their

applications in 2007. As such, we simulate the distribution of 2007 household types

using the characteristics of their residential zones according to the 2006 de�nition.

We also assume that strategic households had rational expectation about admissions

probabilities in 2007.76

Considered as the most informative test of the model, the �rst two rows of Table

11 explore the changes in the de�nition of priority zones. The 2007 reform led to

situations where some schools were in the priority zone for a household in one year

but not in the other, which would a¤ect the behavior of a strategic household. As

shown in the �rst row of Table 11, in 2006, 24% of the households in our sample

top-listed a school that was in their priority zone by the 2006 de�nition but not by

the 2007 de�nition. In 2007, the fraction of households that top listed these schools

dropped to 12%. On the other hand, the second row of Table 11 shows that the

fraction of households that top-listed schools in their priority zone only by the 2007

de�nition but not by the 2006 de�nition increased from 3% to 12% over the two years.

The model is able to replicate such behaviors and predicts the changes as being from

24% to 14.6% for the �rst case, and from 4.5% to 11% for the second case. The next

3 rows of Table 11 show that the model �ts the data well in terms of the observable

characteristics of the top-listed schools. In particular, the model replicates the fact

that top-listed schools in 2007 were of similar quality, shorter distance and lower

74Appendix Table A3-A7 show the �ts for subgroups of households conditional on demographics.
75In 2007, 12,335 Barcelona households participated. We follow the same sample selection rule as

that for the 2006 sample. In particular, the 7,437 households in 2007 do not include the 998 parents
who reported �high school or above� as their education levels. We interpolate the probability of
being college-educated for these parents and include them in the counterfactual policy experiments.
76As shown below, we can �t the data in both years, suggesting that our assumptions about the

type distribution and the rational expectation for the 2007 case are not unreasonable.
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tuition, relative to those in 2006.

Table 11 Top-Listed Schools

2006 2007

Data Model Data Model

In Zone 06 Only (%) 24.1 24.1 12.0 14.6

In Zone 07 Only (%) 3.0 4.5 12.0 10.9

Quality 7.9 7.9 7.9 7.9

Distance (100m) 7.1 7.2 6.6 7.0

Fee (100 Euros) 8.1 8.1 7.9 7.8

As mentioned in the model section, there can be multiple lists that are payo¤-

equivalent and imply the same allocation results. All these lists have identical ordered

elements that are allocation-relevant, which is what our model can explain. For

example, consider a list of length 4, the third element of which was a leftover school.

Our model is designed to replicate the �rst three elements of that list, not how

many schools would be listed beyond that point. Table 12 presents the model �t

for the length of the allocation-relevant part of household application lists. In both

years, about 86% of households� lists contained only one allocation-relevant school

and fewer than 3% of households had more than 2 relevant schools on their lists,

which is not surprising given that most households were assigned in the �rst round.

The model-predicted distribution of the list length lies slightly to the right of the data

distribution.

Table 12 Relevant List Length (%)

2006 2007

Data Model Data Model

1 85.8 83.1 86.1 83.2

2 11.5 14.5 11.7 10.3

� 3 2.7 3.4 2.2 6.5

Table 13 shows the rounds at which households were assigned, given the observed

admissions probabilities. The model slightly under-predicts the fraction of households

assigned in Round 1 for 2006. Table 14 shows that the model closely replicates the

enrollment rate within the public school system. In particular, with the ex-post

41



shocks, the model replicates the non-enrollment behavior by households who were

assigned to their �rst choices.77

Table 13 Assignment Round (%)

2006 2007

Data Model Data Model

1 93.0 91.3 92.0 92.6

2 2.8 4.0 3.1 3.6

� 3 1.5 0.9 1.8 0.6

Unassigned 2.7 3.8 3.1 3.2

Table 14 Enrollment in the Public System (%)

2006 2007

Data Model Data Model

All 96.7 96.5 97.6 96.6

Assigned in Round 1 97.8 97.1 98.3 97.1

We estimate our model by solving individual households�problem, taking the data

admissions probabilities as given. This estimation method avoids having to solve for

the equilibrium under BM, which is known for its multiple equilibria. However, it is

still worth checking that the model prediction lines up with the observed equilibrium.

To do so, we contrast the model-predicted admissions, generated by the BM allocation

mechanism and the model-predicted household application pro�les, with the data.78

Table 15 reports the fractions of schools �lled in each round. In both years, the model

underpredicts (overpredicts) the number of schools �lled in the �rst (second) round,

but the overall �t is good.

77Appendix D conducts a comparative statics analysis and contrasts our model predictions with
those from a counterpart model with fewer strategic households.
78In this case, we run the BM algorithm given the simulated applications to allocate households,

instead of allocating them according to the observed admissions probabilities as in Table 13. To
simulate the allocation results using the BM mechanism, we need to use all households in the sample.
Therefore, we include households whose education levels are interpolated (Footnotes 59 and 75).
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Table 15 School Filled Round�(%)

2006 2007

Obs: 317 Data Model Data Model

1 44.2 42.0 46.4 44.8

2 7.6 10.6 11.4 12.4

� 3 8.2 9.0 6.0 8.6

Leftover 40.0 38.4 36.3 34.2
�A school is �lled in Round r if it has open seats

in rounds 1 to r, but not in later rounds.

7 BM vs. GS vs. TTC

Using the estimated model, we are ready to answer the question we posed at the

beginning of the paper. How does the current Boston mechanism (BM) compare

with two of its alternatives, the Gale-Shapley student deferred acceptance mecha-

nism (GS) and the top trading cycles mechanism (TTC)? In a di¤erent experiment,

presented in the appendix, we assess the impacts of the 2007 reform, which changed

the student-school priority structure by rede�ning priority zones. In both experi-

ments, households�welfare refers to their evaluations of their assignment outcomes

relative to their outside options, i.e., vij:79

7.1 Theoretical Background

This subsection brie�y discusses the properties of the three alternative mechanisms;

Appendix E contains detailed descriptions.80 The GS procedure is similar to BM

with the key di¤erences that students are only temporarily assigned to schools in

each round and that one�s chance of being �nally admitted to a school does not

depend on the ranking of the school on her application list. The TTC algorithm

has a very di¤erent structure. Intuitively, in each round TTC creates cycles of trade

between individuals. Each individual in a cycle trades o¤a seat in her highest-priority

school for a seat in her announced most preferred school among those that still have

79All simulations include the interpolated sample, as mentioned in footnotes 59 and 75. All
simulations use the school-household-speci�c priority scores given by (1) ; as they were de�ned by
the o¢ cial rules in the relevant year.
80See Abdulkadiro¼glu and Sönmez (2003) for further theoretical discussions.
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seats. Whenever such a cycle is formed the allocation is �nal.

Three properties are considered as desirable for a mechanism, i.e., Pareto e¢ -

ciency, truth revealing and the elimination of justi�ed envy (also known as stabil-

ity).81 Unfortunately, all three properties may not hold simultaneously. BM satis�es

none of the properties. GS and TTC are both truth revealing.82 Between the other

two con�icting properties, GS eliminates justi�ed envy at the cost of Pareto e¢ ciency,

while TTC achieves Pareto e¢ ciency at the cost of stability.

Despite the fact that BM does not satisfy any of the three desirable properties,

the welfare comparison between BM and its alternatives is ambiguous.83 The am-

biguity arises from the coexistence of two competing forces. On the one hand, BM

can lead to potential misallocations because households hide their true preferences.

This source of misallocation is absent in the truth-revealing GS and TTC. On the

other hand, BM may better �respect�households�cardinal preferences than GS and

TTC (Abdulkadiro¼glu, Che and Yasuda (2011)). BM-induced household behaviors

increase the chance that the �right match�is formed, where a school being matched

to households that value it more.84 Under a truth-revealing mechanism, households

who share the same ordinal preferences will rank schools the same way in their appli-

cations and be given the same chance of being allocated to various schools, regardless

of who will gain the most from each school. Given that it is theoretically inconclusive,

the welfare comparison between BM and GS or TTC becomes an empirical question,

one that we answer below.
81Stability requires that there be no unmatched student-school pair (i; j) where student i prefers

school j to her assignment and she has higher priority at j than some other student who is assigned
a seat at school j.
82This is true when one�s priority scores do not depend on one�s choices. As such, throughout

our experiments, we consider GS and TTC with the standard priority structure, e.g., one�s priority
score in Round 1 does not carry over to future rounds.
83The ambiguity has been re�ected in the con�icting �ndings in the theoretical and lab experi-

mental studies that compare BM with GS. Pareto e¢ ciency is an ordinal concept, which does not
necessarily imply the highest level of total household welfare.
84The intuition can be explained by the following simple example with equal priorities. Consider

three schools and a set of households who share the same ordinal but di¤erent cardinal preferences
for these schools, where the schools are ranked from high to low as Schools 1, 2 and 3. Under BM,
the strategic decision is whether to take the high risk and top-list School 1 or to play it safe and
top-list School 2. Given the same evaluation for School 1, a household whose evaluations for Schools
2 and 3 are similar is more likely to choose the risky strategy because it has less to lose from the
gamble. Given the same evaluation for School 3, a household that values School 1 much higher than
School 2 is more likely to choose the risky strategy because it has more to gain from the gamble.
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7.2 Results

Under both GS and TTC with the standard priority structure, all households, strate-

gic or not, will list schools according to their true preferences. As such, we simulate

each household�s application list according to their true preferences and assign them

using GS and then using TTC.85 We compare the results from these two counterfac-

tual mechanisms with those from the baseline.86 We present our results under the

more recent, i.e., the 2007, priority zone structure.87

Remark 5 In the following, we will present consequences of the reforms from BM

to GS and TTC on the total household welfare, the distribution of winners and losers

among di¤erent subgroups of households, as well as the assignment outcomes. No-

tice that the level of total household welfare is not necessarily the criterion for social

welfare, which may involve di¤erent weights across households. Given that we can

calculate the welfare changes at the household level, our results can be used to cal-

culate any weighted social welfare. Moreover, household welfare may not be the only

factor that policy makers consider. For example, policy makers may put high value on

truth-revealing and the elimination of justi�ed envy, which will make GS particularly

attractive. Therefore, we do not necessarily recommend one mechanism over another

in this paper. However, given a social objective, our results can be easily used for

policy-making purposes.

7.2.1 Household Welfare Comparison

To form the basis for comparison, the �rst column of Table 16 shows the average and

the dispersion (standard deviations in parentheses) of welfare among the population

under BM. The second column of Table 14 shows changes in welfare (�utils) when

BM is replaced by GS. The average household welfare decreases by 5.4 from the

BM level of 3,811. As many other policy changes, a change from BM to GS has

di¤erent impacts on households qualitatively and quantitatively, which leads to a wide

85Notice that all allocation mechanisms we consider use random lotteries to rank students with
the same priority score. As such, for each experiment we simulate the overall allocation procedure
and obtain the outcomes for all students for a given set of random lotteries. We repeat this process
many times to obtain the expected (average) outcomes for each simulated student.
86Notice that to simulate GS and TTC, it is su¢ cient to know household preferences. However,

to compare GS or TTC with the baseline (Boston) mechanism, one needs to know the distribution
of household strategic types.
87The 2006 results are similar, available on request.
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dispersion of welfare changes across households, with an overall standard deviation

of 31. Comparing across di¤erent groups of households, the average welfare decreases

more for non-strategic than for strategic households, and more for lower-educated

households.88

Table 16 Household Welfare: BM vs. GS vs. TTC

% BMa GS-BMb TTC-BMc

�utils �100 euros �utils �100 euros

All 3,811 (633) -5.4 (30.9) -10.2 (71.8) 1.9 (40.5) 4.6 (96.3)

Strategic 3,810 (633) -5.3 (30.3) -10.2 (69.9) 1.6 (39.9) 3.9 (94.3)

Non-strategic 3,818 (629) -5.7 (41.0) -19.7 (131.8) 8.3 (51.5) 19.7 (131.8)

Edu< HS 3,690 (600) -9.9 (28.3) -10.0 (28.6) 0.1 (31.4) 0.1 (31.7)

Edu= HS 3,934 (619) -5.7 (33.0) -18.3 (106.3) 2.5 (44.1) 8.0 (141.9)

Edu> HS 3,792 (647) -2.1 (30.3) -3.7 (54.6) 2.7 (42.8) 4.8 (77.2)
awelfare under BM, bchange from BM to GS, cchange from BM to TTC

�utils: welfare change in utils. �100 euros: welfare change in 100 euros.

To translate the welfare from utils to more intuitive measures, we use the education-

speci�c coe¢ cients for fees as reported in Table 8.89 Column 3 of Table 14 shows that,

on average, the change from BM to GS causes a welfare loss of 1,020 euros. Although

the welfare loss in utils decreases with education, the decreasing price sensitivity

across education groups yields a di¤erent ranking of lost euros. For example, the fee-

equivalent measure for the lowest-educated group is only 1,000 euros, as compared

to 1,830 euros for the middle education group. Clearly, one should not compare the

euro losses directly across education groups because they view the same euro amount

di¤erently.90

The last two columns of Table 16 compares BM with TTC. For an average house-

hold, the change from BM into TTC increases the welfare by 460 euros. As such,

TTC leads to the highest total household welfare among all three alternatives. The

88Our �nding that GS decreases welfare for both strategic and non-strategic households is consis-
tent with some recent theoretical work, e.g., Abdulkadiro¼glu, Che, and Yasuda (2011).
89As mentioned earlier, these coe¢ cients may be biased if the unobserved and the observed school

characteristics are correlated. Welfare changes measured in euros, therefore, may be biased. How-
ever, welfare changes measured in utils are free of this problem.
90Although the households we study face a much larger choice set and a more complicated problem

under BM as a result of the special priority rule in Barcelona, our �ndings are not peculiar. For
example, Hwang (2015) and Agarwal and Somaini (2015), who study BM and the Cambridge system,
respectively, with standard priority rules, also �nd that GS would yield lower welfare.
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gains are especially large for the non-strategic households, measured at 1,970 euros.

The average welfare increases for all education groups, with the lowest group gaining

the least amount.

Result 1: In terms of the level of total household welfare, the three mechanisms are
ranked as TTC > BM > GS.

Table 17 Winners and Losers (%)

BM to GS BM to TTC

Winner Loser Winner Loser

All 11.7 33.0 25.0 21.5

Strategic 11.6 32.8 24.6 21.7

Non-strategic 15.3 36.7 32.3 17.5

Edu < HS 7.8 37.0 23.1 22.1

Edu = HS 13.0 35.5 27.4 23.0

Edu > HS 13.3 28.2 24.3 20.0

Table 17 reports fractions of winners and losers under each change. The �rst two

columns show the case for a change from BM to GS, which bene�ts 12% of house-

holds while hurting 33% of them. Moreover, the fact that there are more losers than

winners holds for all subgroups of households. In contrast, as shown in Columns 3

and 4, a change from BM to TTC generates more winners (25%) than losers (22%);

and this pattern persists for all subgroups of households.

Result 2: There are more losers than winners from a change of BM into GS, and

more winners than losers from a change of BM into TTC.

7.2.2 Cross-Zone Inequality

A household�s welfare can be signi�cantly a¤ected by the school quality within its

zone not only because of the quality-distance trade-o¤, but also because of the quality-

risk trade-o¤ created by the priority structure. For equity concerns, a replacement of

BM will be more desirable if it is more likely to bene�t those living in poor-quality

zones. Table 18 tests whether or not each of the counterfactual reforms meets this

goal by showing the zone quality among winners and losers from each reform. The

�rst two columns show the case for the change from BM to GS. The winners are
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those who live in better zones than the losers: the average zone quality among all

winners is 7.83 while that among losers is 7.78. This di¤erence is almost 20% of a

standard deviation of quality across zones. As shown in the next three rows, this

pattern persists across all educational groups. Therefore, a change from BM to GS

increases the dependence of welfare on zone quality, which is against the goal of eq-

uity across zones. The next two columns show that changing from BM to TTC, the

average zone quality is similar across winners and losers, which implies that such a

reform is unlikely to reduce or to enlarge the cross-zone inequality as compared to BM.

Result 3: Welfare dependence on zone quality increases with a change from BM to

GS, and remains una¤ected by a change from BM to TTC.

Table 18 Zone Quality: Winners vs. Losers

BM to GS BM to TTC

Winner Loser Winner Loser

All 7.83 7.78 7.80 7.80

Edu < HS 7.72 7.67 7.69 7.68

Edu = HS 7.79 7.77 7.79 7.79

Edu > HS 7.90 7.88 7.89 7.91

The Cost of the Elimination of Justi�ed Envy Underlying the results in Table

18 is the residence-based priority and the high respect GS has for priorities, the

latter enabling GS to eliminate justi�ed envy but not without cost.91 The �rst three

columns of Table 19 show the fractions of households assigned to schools in their own

school zones under alternative mechanisms. The �rst row shows that about 70% of

all households are assigned to schools in zone under GS, followed by the case of BM

(65%) and �nally TTC (58%). The second row shows this fraction among households

91Under BM, a risk-taking poor-zone household only needs to compete with other households
who top-listed the same school, since the assignment is �nal at each round. Under GS, the same
poor-zone household has to compete not only with those who have the same favorite school but
also with those who are unable to get their favorite schools, because the assignment in each round
is only temporary. This can make it harder for a poor-zone household to get into a better school
out of its zone under GS than under BM, which in turn can make such a household worse o¤ under
GS. Under TTC, having high priority to a better school increases one�s chance to form a trading
cycle. However, conditional on forming a cycle, the assignment does not depend one�s priority for
the receiving school. Therefore, who wins and who loses from the change of BM into TTC depends
much less on the quality of one�s own zone. See the appendix for the details of the GS and the TTC
algorithms.
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whose favorite schools are in their school zones. While over 90% of these households

are assigned to in-zone schools under BM and GS, this �gure is only 85% under TTC.

Most illustrative of the point, the third row shows this fraction among households

whose favorite schools are out of their school zones. Even though a household would

like to attend a school out of its zone, due to its high respect for priorities, GS assigns

38% of them within their zone, as compared to 28% under BM and 19% under TTC.

Table 19 The Cost of the Elimination of Justi�ed Envy

Assigned in Zone (%) Assigned to Favorite (%)

BM GS TTC BM GS TTC

All Households 65.1 70.1 58.4 68.3 64.1 67.8

Favorite is in Zone 90.2 91.7 85.5 82.8 79.3 74.0

Favorite is out of Zone 28.4 38.4 18.8 47.2 41.8 58.9

The last three columns of Table 19 shows the extent to which the respect for pri-

orities hampers households�chances of being assigned to their favorite schools. Row 1

shows that over all households, the chance of being assigned to their favorite schools

is the about 68% under both BM and TTC, and 64% under GS. Row 2 shows that

BM is the best at accommodating households preferences if their favorite schools are

in their school zones, followed by GS and then TTC. Finally, while TTC enables 59%

of households whose favorite schools are out of their zones to attend their favorite

schools, this fraction is only 47% under BM and 42% under GS.

Result 4: GS assigns the largest fraction of households to in-zone schools, followed
by BM and then TTC. In terms of enabling households to get out of their zones to

attend their desired schools, the three mechanisms are ranked as TTC > BM > GS.

Remark 6 Like most studies on school choice mechanisms, our cross-mechanism
comparisons takes student-school priority structures as given.92 These structures dif-

fer across cities; and they play an essential role in the allocation of students. We leave

it for future research, with data from multiple cities, to understand the trade-o¤s and

social objectives underlying these di¤erent priority structures.

92See Kominers and Sönmez (2012) and Dur, Kominers, Pathak, and Sönmez (2013) for examples
of theoretical studies on priority structures.

49



7.2.3 School Assignment

Table 20 compares the assignment outcomes across mechanisms. The �rst three

columns show the changes in the characteristics of schools households are assigned

to when BM is replaced by GS.93 For an average household, school quality increases

by 0.04, school-home distance reduces by 40 meters, and fee increases by 8 euros.94

The low-education group sees the smallest increase in quality, the smallest deduction

in distance, while the largest increase in fees, which explains why the average welfare

(utils) decreases the most for this group (Table 16).

Table 20 School Assignment

GS-BM TTC-BM

Quality Distance(100m) Fees(euro) Quality Distance Fees

All 0.04 (0.4) -0.4 (4.7) 7.8 (333.2) 0.05 (0.5) 0.6 (5.5) 12.4 (427.0)

Edu < HS 0.02 (0.3) -0.1 (4.2) 8.8 (284.6) 0.03 (0.4) 0.5 (4.7) 2.4 (360.4)

Edu = HS 0.05 (0.5) -0.5 (5.1) 6.3 (356.0) 0.06 (0.5) 0.7 (5.9) 17.1 (461.1)

Edu > HS 0.05 (0.5) -0.5 (4.7) 8.3 (343.9) 0.06 (0.5) 0.7 (5.6) 15.3 (438.8)

The last three columns of Table 20 show the changes when BM is replaced by

TTC. School quality increases by 0.05 on average, with the lowest-educated group

experiencing the smallest increase of 0.03. School-home distance increases by about

60 meters for an average household. All households are assigned to slightly more

expensive schools on average. These �gures illustrate the fact that the current BM

leads to misallocation as people hide their true preferences, and that it makes house-

holds ine¢ ciently apply for close-by schools that they have higher priority for, while

giving up higher-quality schools with longer distance that they have lower priority for.

Result 5: Compared to TTC, both BM and GS ine¢ ciently assign students to

schools that are of shorter distance but lower quality.

93The baseline case is presented in the appendix Table A9.
94A non-zero average change in quality is possible because there are more school seats than students

city-wise.
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8 Conclusion

We have developed and estimated a model of school choices by households under the

Boston mechanism. We have recovered the joint distribution of household preferences

and their strategic types, using administrative data from Barcelona before a drastic

change in the de�nition of households�priority school zones. The estimated model

has been validated using data after this drastic change.

We contribute to the on-going debates on school choice mechanism designs by

quantifying the welfare impacts of replacing the Boston mechanism with its two al-

ternatives, GS and TTC. A change from the Boston mechanism to GS creates more

losers than winners. This change also increases the dependency of a household�s wel-

fare on the quality of its school zones, leading to further inequality concerns across

residential zones. In contrast, a change from the Boston mechanism to TTC creates

more winners than losers. However, the change of BM to TTC is unlikely to a¤ect

the cross-zone inequality.

The methods developed in this paper and the main empirical �ndings are promis-

ing for future research. One particularly interesting extension is to incorporate house-

hold�s residential choices into the framework of this paper. Individual households may

relocate in order to take advantage of changes in school choice mechanisms and/or in

residence-based priority structures. Such individual incentives will in turn a¤ect the

housing market. There is a large literature on the capitalization of school quality for

housing prices, as reviewed by Black and Machin (2010) and Gibbons and Machin

(2008).95 An important yet challenging research project involves combining this litera-

ture and the framework proposed in our paper, in order to form a more comprehensive

view of the equilibrium impacts of school choice mechanisms on households�choices

of schools and residential areas, and on the housing market.

95Ries and Somerville (2010) exploit changes in the catchment areas of public schools in Vancouver
and �nd signi�cant e¤ects of school performance on housing prices. Epple and Romano (2003)
conjecture that school choice systems can eliminate the capitalization of school quality on the housing
market. Machin and Salvanes (2010) exploit policy reforms in Oslo that allowed students to attend
schools without having to live in the school�s catchment area, and �nd a signi�cant decrease in the
correlation between a school�s quality and housing prices.
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Appendix

A1. Properties of the optimal list for a strategic household.
Consider an optimal list A1i = fa11; :::; a1r; :::a1R0g derived by the backward induction

as in Section 3.3.2, if the student does not face 100% admissions rate for any of the

�rst r � 1 listed schools, and she does for the rth listed school
�
pra1r

�
s1j�ri

�
= 1
�
,

then the following lists all generate the same value for the household as A1i does, and

hence are all optimal:

1) a list that shares the same �rst r elements of A1i .
96

2) a list of length n (r < n � R); which shares the same �rst r � 1 elements of Ai
and the last (nth) element is a1r with 100% admissions probability for Household i at

Round n; and for all elements r0 2 fr; :::; n� 1g, i faces 0 admissions probability.
3) Furthermore, if this rth listed school is one�s backup school with par (:) = 1; then

any list of length n (r � 1 � n � R) is also optimal if it has the same �rst r � 1
elements of A1i and the admissions probabilities to the other elements are all 0.

A2. Proof for Claim 1
An application list with the following features reveals that the household must

be non-strategic: 1) for some rth (r > 1) element ar on the list prar (�) = 0, and 2)

pr
0
ar0
(�) < 1 for all r0 < r; and 3) for some r00 � r+1; 0 < pr

00

a
r
00 (�) < 1 and pr

000

a
r
000 (�) < 1

for any r < r000 < r
00
:

Without Feature 2), the list can still be strategically optimal due to Remark 3.

Without Feature 3) a household may still be strategic if it prefers some sure-to-get-

in school listed later over any of the schools listed after ar, including ar: All three

features guarantee that the household is non-strategic.
96In particular, one optimal list may have the same school j listed in two di¤erent rounds r < r0;

with prj
�
s1j�ri

�
= 1.
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Proof. Take a given list that satis�es all three features in Claim 1: A = fa1; :::; ar; :::; ar00 ; :::g,
where ar00 is the �rst school that satis�es Feature 3). This implies that p

r
000

a
r
000 (s1j�

r000

i ) =

0 for all r < r
000
< r

00
, since Feature 3) ensures that they be smaller than 1 and r

00
is

the �rst to be strictly positive. Let W r
i (A) be the residual value of this list starting

from the rth element.

W r
i (A) = p

r
ar

�
s1j�ri

�
viar + (1� prar

�
s1j�ri

�
)W r+1

i (A)

= W r+1
i (A)

= pr+1ar+1

�
s1j�ri

�
viar+1 + (1� pr+1ar+1

�
s1j�ri

�
)W r+2

i (A)

= W r+2
i (A)

= : : :

= pr
00�1
a
r
00�1

�
s1j�ri

�
via

r
00�1

+ (1� pr
00�1
a
r
00�1

�
s1j�ri

�
)W r

00

i (A)

= W r
00

i (A) :

Consider an alternative (not necessarily optimal) application listB = fa1; :::; ar00 ; :::; ar00 ; :::g ;
which di¤ers from A only in that ar is replaced by ar00 : Note that p

r
ar00
(:) = 1 since the

school is �lled up in round r
00
> r.97 The residual value of this list at its rth element

(now ar00 ) is given by

W r
i (B) = p

r
a
r
00

�
s1j�ri

�
via

r
00 + (1� pra

r
00

�
s1j�ri

�
)W r+1

i (B)

= pra
r
00

�
s1j�ri

�
via

r
00 + (1� pra

r
00

�
s1j�ri

�
)W r+1

i (A)

= pra
r
00

�
s1j�ri

�
via

r
00 + (1� pra

r
00

�
s1j�ri

�
)W r

00

i (A)

> pr
00

a
r
00

�
s1j�r

00

i

�
via

r
00 + (1� pr

00

a
r
00

�
s1j�r

00

i

�
)W r

00

i (A)

= W r
00

i (A)

The inequality holds because pra
r
00

�
s1j�ri

�
> pr

00

a
r
00

�
s1j�r

00

i

�
(admissions probabilities

97Note that for both list A and list B; the value of �
r

i in every round is the same because there is no

updating for rounds when pr
000

a
r
000 (s1j�

r000

i ) = 0 for all r < r
000
< r

00
. As a result,W r+1

i (B) =W r+1
i (A).
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decrease over rounds) and

via
r
00 = Emax

n
uia

r
00 ; �
o
> E (�) = 0:

Given that the �rst r� 1 elements are also unchanged, it is immediate that the value
of the whole list W 1

i (B) > W
1
i (A) :

A3. Dimensionality of Strategic Household�s Problem
Case 2) Constant Lottery Number

Let Or � J be the subset of schools that have been �lled up by the beginning of

Round r; the size of which is given by jOrj �
PJ

j=1 I (r > rj) : Let J
r (Si) � Or+1 be

the subset of schools for which a household with priority score vector Si can possibily

be subject to lotteries in round r; the size of which is given by

jJr (Si)j �
JX
j=1

I (sij = sj; r = rj) : (14)

Let NAr (Si) � Or+1 be the subset of schools that would reject i for sure in Round r
(NA for not available):

In Round 1, �
1

i 2 f1g : For Round r > 1; including the unconditional upper bound

of 1, the maximum number of di¤erent values the state variable �
r

i can take is

1 +
Pr�1

r0=1

��Jr0 (Si)��, which happens when the cutj�s are all di¤erent and those oc-
cur in Round r are uniformly higher than those occuring in Round r+1.98 Notice 1)

�
r

i = 1 for r > 1 is possible only if the school listed ar0 2 NAr
0
(Si) for all r0 < r, and

2)
�
[r0<rJr

0
(Si) ;[r0<rNAr0 (Si)

	
� Or hence 1+

Pr�1
r0=1

��Jr0 (Si)�� � jOrj; and the in-
equality is strict if j[r0<rNAr0 (Si)j > 1. Therefore, given there are J schools to choose
from in each round (including those with zero admissions probabilities), the dimension

of the problem in Case 2) cannot be larger than J
�
1 +

PR
r=2

�
1 +

Pr�1
r0=1

��Jr0 (Si)���� �
J
�
1 +

PR
r=2 jOrj

�
, which is much smaller than jP (J ;R)j :

Case 3) Constant Lottery Number and Constant Priority Score
In Round 1; a household�s state variable is again �

1

i 2 f1g : In Round r > 1; be-

98For example, suppose there is one cut1 in Round 1 and one cut2 in Round 2; so that �
1

i 2
f1; cut1g : Given the rule that �

2

i = min
n
cut2; �

1

i

o
, if cut1 � cut2 then the �

2

i 2 f1; cut1g ; while if

cut1 > cut2; �
2

i 2 f1; cut1; cut2g :
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sides the state variable �
r

i ; there is also an additional state variable, the priority

score of one�s top-listed school. Let 
i be the support of Household i�s priority

scores and j
ij be the size of 
i: For a given s in 
i; the number of schools for
which Household i can possibily be subject to lotteries in round r > 1 is given

by jJr (s1)j �
PJ

j=1 I (s = sj; r = rj) : Therefore given s; the maximum number

of di¤erent values the state variable �
r

i can take is at most 1 +
Pr�1

r0=1

��Jr0 (s1)��.
Notice that [r0<r;s2
iJr

0
(s1) � Or; hence

P
s2
i

�
1 +

Pr�1
r0=1

��Jr0 (s1)��� � j
ij +
jOrj : Therefore, the dimension of the problem in Case 3) cannot be larger than

J
�
1 +

P
s2
i

PR
r=2

�
1 +

Pr�1
r0=1

��Jr0 (s1)���� = J �1 +PR
r=2

P
s2
i

�
1 +

Pr�1
r0=1

��Jr0 (s1)���� �
J
�
1 +

PR
r=2 (j
ij+ jOrj)

�
= J

�
1 + (R� 1) j
ij+

PR
r=2 jOrj

�
; which is in turn smaller

than jP (J ;R)j.

B1. Detailed Functional Forms
Household Characteristics: xi = [xi1; :::; xi5] ; where xi1 = I (edui < high school) ;

xi2 = I (edui = high school) ; xi3 = I (edui � College) ; xi4 = I (single parenti = 1) ;
xi5 = sibling�s school (xi5 = 0 if outside school, 2 f1; :::Jg if non-private school, �9
if no sibling).

School Characteristics: wj = [wj1; wj2; wj3; wj4], where wj1 is school quality, wj2 is

tuition level, wj3 is capacity, and wj4 = 1 if the school is semi-public, 0 otherwise.

Home-school distance: dij; measured in 100 meters.

Zone Characteristics: Let Nz be the number of schools in zone z; and qz be the

average school quality in zone z:

B1.1 Utility functions
Household preference heterogeneity is captured via three channels: 1) households

of di¤erent characteristics may have di¤erent overall evaluation of public schools rel-

ative to the outside option; 2) households with di¤erent parental education may

have di¤erent trade-o¤s among distance, quality, tuition costs and unobserved school

characteristics; 3) each household has its idiosyncratic vector of tastes for schools. For-

mally, Household i�s utility from attending school j is given by uij = U (wj; xi; dij; �j)+

�ij: De�ne g� (�) and C (�) such that U (wj; xi; dij; �j) = g� (wj; xi; �j)� C (dij) :
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g� (wj; xi; �j) =

�1xi4 + �2 [I (xi5 = j)� I (xi5 = 0)]

+

3X
m=1

xim (�0m + �1m�j) + wj1

 
3X

m=1

�mxim

!
+ wj2

 
3X

m=1

�3+mxim

!

+ �7wj3 + �8w
2
j3 + �9w

2
j1 + wj4

 
3X

m=1

�9+mxim

!
;

where the last two rows describe the part of education-speci�c utility that depends

on wj and �j, with the form ofX
e

(�0e + �1e�j + wj�e) I (edui = e) :

The cost for distance is given by

C (dij) =
�
dij + c1d

2
ij + c2I (dij > 5) + c3I (dij > 10)

�
:

B1.2 Type distribution

� (xi; li) = � (xi; zli) =
exp(�0 +

P4
m=1 �mxim + �5I (xi5 � 0) + �6Nzli + �7qzli )

1 + exp(�0 +
P4

m=1 �mxim + �5I (xi5 � 0) + �6Nzli + �7qzli )
:

B2. Identi�cation
Since the dispersion of post-application shocks is mainly identi�ed from the en-

rollment decisions, to ease the illustration, we show the identi�cation of the model

without post-application shocks. A household has observables (xi; li) and can be one

of two types T = 0; 1: Home-school distance is given by dji = d (li; lj) and zli is the

zone that li belongs. Let the taste for school be �ij s i:i:d: N(0; 1):99 In line with

(IA2) and (IA3) in the paper, assume that d is independent of T conditional on (x; zl)

and � is independent of (x; l; T ) : To give the idea, consider the case where a house-

hold can apply only to one school from the choice set of schools 1 and 2; and where
99Given that the linear distance enters the utility function with coe¢ cient of minus one, the

standard deviation of � is identi�ed from the variation in distance within (x; zl) group. To simplify
the notation, we will present the case where �� is normalized to 1.
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all households face the same admissions probabilities. Household-speci�c admissions

probabilities provide more variations, which will provide more identi�cation power.

Let uij be the utility net of individual taste, uij = g (�j; wj; xi) � C (dij) ; where
g (�) is the reduced form function given by

g (�j; wj; xi) = �1xi4+�2 [I (xi5 = j)� I (xi5 = 0)]+
X
e

(�0e + �1e�j + �ewj) I (edui = e) :

Let pj > 0 be the probability of admission to school j and p1 6= p2 (IA1). Let y be
the decision to list School 1. y is related to the latent variable y� in the following way

y (xi; li; �i; T ) = 1 if only if

y� (xi; li; �i; T ) = T (pi1ui1 � pi2ui2) + (1� T )(ui1 � ui2) > 0:

Hence the probability of observing the decision to list 1 by someone with (xi; li) is

H (xi; li) = � (xi; zli) �

 
p1ui1 � p2ui2p

p21 + p
2
2

!
+ (1� � (xi; zli)) �

�
ui1 � ui2p

2

�
:

Fix (x; zl) ; H (�) only varies with d; so we can suppress the dependence on (x; zl) and
let g (�j; wj; xi) = gj such that

H (d) = ��

 
(p1g1 � p2g2)� (p1C (d1)� p2C (d2))p

p21 + p
2
2

!
(15)

+ (1� �) �
�
(g1 � g2)� (C (d1)� C (d2))p

2

�
:

B2.1 Identi�cation of g (�) and � (�)
The following theorem shows that �x any (x; zl) ; g (�j; wj; x) and � (x; zl) are

identi�ed.

Theorem 1 Assume that 1) � 2 (0; 1) ; 2) there exists an open set D� � D such

that for dij 2 D�; C 0 (dij) 6= 0: Then the parameters � = [g1; g2; �]0 in (15) are locally
identi�ed from the observed application decisions.

Proof. The proof draws on the well-known equivalence of local identi�cation with
positive de�niteness of the information matrix. In the following, I will show the
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positive de�niteness of the information matrix for model (15) :

Step 1. Claim: The information matrix I(�) is positive de�nite if and only if there

exist no ! 6= 0, such that !0 @H(d)
@�

= 0 for all d.

The log likelihood of an observation (y; d) is

L (�) = y ln(H(d)) + (1� y) ln(1�H (d)):

The score function is given by

@L

@�
=

y �H (d)
H (d) (1�H (d))

@H(d)

@�
:

Hence, the information matrix is

I(�jd) = E
�
@L

@�

@L

@�0
jd
�
=

1

H (d) (1�H (d))
@H(d)

@�

@H(d)

@�0
:

Given H (d) 2 (0; 1), it is easy to show that the claim holds.

Step 2. Show !0 @H(d)
@�

= 0 for all d =) ! = 0:

De�ne p�j =
pjp
p21+p

2
2

; B1 (d) = (p�1g1 � p�2g2) � (p�1C (d1)� p�2C (d2)) ; and B0 (d) =�
(g1�g2)�(C(d1)�C(d2))p

2

�
; @H(d)

@�
is given by:

@H(d)

@�
= �(B1 (d))� � (B0 (d))

@H(d)

@g1
= ��(B1 (d))p

�
1 + (1� �)�(B0 (d))

1p
2

@H(d)

@g2
= ���(B1)p�2 � (1� �)�(B0)

1p
2
:

Suppose for some !; !0 @H(d)
@�

= 0 for all d :

!1[�(B1)� �(B0)] + !2
�
��(B1)p

�
1 + (1� �)�(B0)

1p
2

�
�!3

�
��(B1)p

�
2 + (1� �)�(B0)

1p
2

�
= 0
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Take derivative with respect to d2 evaluated at some d2 2 D�

!1[�(B1)p
�
2 �

�(B0)p
2
]C 0 (d2) + !2

�
��0(B1)p

�
1p
�
2 + (1� �)�0(B0)

1

2

�
C 0 (d2) (16)

� !3
�
��0(B1) (p

�
2)
2 + (1� �)�0(B0)

1

2

�
C 0 (d2) = 0:

De�ne 
 (d) = �(B1)
�(B0)

, divide (16) by �(B0) :

!1[
 (d) p
�
2 �

1p
2
]� !2

�
�B1
 (d) p

�
1p
�
2 + (1� �)B0

1

2

�
+!3

�
�B1
 (d) (p

�
2)
2 + (1� �)B0

1

2

�
= 0


 (d) [!1p
�
2 � �B1p�2(!2p�1 � !3p�2)]� [

!1p
2
+ (!2 � !3) (1� �)B0

1

2
] = 0 (17)

Since 
(d) is a nontrivial exponential function of d, (17) hold for all d 2 D� only if

both terms in brackets are zero for each d 2 D�, i.e.

!1p
�
2 � �B1 (d) p�2(!2p�1 � !3p�2) = 0 (18)

!1p
2
+ (!2 � !3) (1� �)B0 (d)

1

2
= 0:

Take derivative of (18) again with respect to d2, evaluated at d2 2 D� :

��C 0 (d2) (p�2)
2 (!2p

�
1 � !3p�2) = 0

(!2 � !3) (1� �)C 0 (d2)
1

2
p
2
= 0:

Since � 2 (0; 1); pj > 0 (hence p�22 > 0) and C 0 (d2) 6= 0 for some d; we have

!2p
�
1 � !3p�2 = 0
!2 � !3 = 0:

Given p1 6= p2 (hence p�1 6= p�2); follows that ! = 0:

B2.2 Identi�cation of C(dij) and (�; �; �; �)
1) Given the identi�cation result from B2.1, and given that C(dij) is common
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across (x; zl)�s; the parameters in C(dij) solves for the system of equations (15),

where one equation corresponds to one (x; zl) :

2) Once the value of g (�j; wj; xi) is identi�ed for each (j; xi) ; the parameters

governing g (�) are identi�ed using the variations in (wj; xi) : In particular, for the
middle-education group �02 = 0; �12 = 1; �2 = 0 are normalized, which means

g (�j; wj; xi) = �1xi4 + �2 [I (xi5 = j)� I (xi5 = 0)] + �j. As a result,
�
�; f�jgj

�
are

identi�ed using the variation of (xi4; xi5) within the middle-education group, so the

value (�0e + �1e�j + wj�e) is known for e = 1; 3. The variation of wj thus identi�es

(�e; �e) :

C. Priority Score Structure
Case 1: Those who do not have a sibling in school have two levels: xia (xia+ b1)

for out-of-zone (in-zone) schools.

Case 2: Those whose sibling(s) is (are) in in-zone schools have 3 levels: xia (xia+ b1)

for out-of-zone (in-zone) non-sibling schools, and xia+ b1 + b2 for sibling schools.

Case 3: Those whose sibling(s) is (are) in out-of-zone schools have 3 levels: xia

(xia+ b1) for out-of-zone (in-zone) non-sibling schools, and xia+b2 for sibling schools.

Case 4: Those with sibling(s) in some in-zone school and sibling(s) in some out-of-

zone school have 4 levels: xia (xia+ b1) for out-of-zone (in-zone) non-sibling schools,

and xia+ b2 (xia+ b1 + b2) for out-of-zone (in-zone) sibling schools.

D. Comparative Statics Analysis
Appendix Table A8 contrasts our model predictions with those from a counterpart

model with only 80% strategic households, which is achieved by adjusting the constant

in the type distribution function. With fewer strategic household, the model predicts

that the top-listed schools are of higher quality, longer distance and lower cost. More

importantly, only 88% of households will be assigned to their �rst choices, as compared

to the 91% prediction from the baseline model. The counterpart model also predicts

a lower fraction of households enrolled in the public system.

E. The GS and TTC Algorithms
E1. The GS algorithm assigns students as follows.

Round 1: Each school j tentatively assigns its seats to students who top-listed it, one

at a time following their priority order. If school j is over-demanded, lower-ranked

applicants are rejected.
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In general, at Round r: Each school j considers the students it has been holding,

together with students who were rejected in the previous round but listed j as their

rth choice. Seats in school j are tentatively assigned to these students, one at a time

following their priority order. If school j is over-demanded, lower-ranked applicants

are rejected.

The algorithm terminates when no student is rejected and each student is assigned

her �nal tentative assignment.

The key di¤erences between GS and BM are 1) in each round, students are only

temporarily assigned to a school until the whole procedure ends; and 2) temporarily

held students are considered based only on priorities along with students who were

rejected from their choices in previous rounds and added into a school�s student

pool in the current round. As such, a previously held student can be crowded out

by a newly-added student who has higher priority. That is, top-listing a school

does not improve one�s chance of being �nally admitted to this school, which makes

truth-telling a (weakly) dominant strategy for households under GS. Moreover, GS

eliminates justi�ed envy. The appealing properties of GS, however, may con�ict with

Pareto e¢ ciency, as shown by Abdulkadiro¼glu and Sönmez (2003).

E2. The TTC algorithm assigns students as follows.

Round 1: Assign a counter for each school which keeps track of how many seats are

still available at the school, initially set to equal the school capacity. Each school

points to the student who has the highest priority for the school. Each student points

to her favorite school under her announced preferences.100 This will create ordered

lists of distinct schools (j) and distinct students (i) : (j1; i1; j2; i2; ::::), where j1 points

at i1; i1 points at j2; and j2 points at i2; etc. Because there are �nite number of

schools, at least one cycle will be formed, where ik (k � 1) points at j1: Although
there may be multiple cycles formed in a round, each school can be part of at most

one cycle and each student can be part of at most one cycle. Every student in a

cycle is assigned a seat at the school she points to and is removed. The counter of

each school in a cycle is reduced by one and if it reduces to zero, the school is also

removed. Counters of all schools that are not in any cycle stay put.

In general, at Round r: Each remaining school points to the student with highest

priority among the remaining students and each remaining student points to her

100A student announces her entire list of schools before the assignment starts. As such, the �point-
ing�by a student is mechanically following her announced list.
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favorite school among the remaining schools. Every student in a cycle is assigned a

seat at the school that she points to and is removed. The counter of each school in a

cycle is reduced by one and if it reduces to zero the school is also removed. Counters

of all other schools stay put.

The algorithm terminates when all students are assigned a seat.

Intuitively, in each round TTC creates cycles of trade between individuals. Each

individual in a cycle trades o¤ a seat in her highest-priority school for a seat in her

most preferred school among those that still have seats. Whenever such a cycle is

formed the allocation is �nal. Hence, the only way for an individual to improve her

allocation is through �stealing�another individual�s school assignment, which will in

turn make this other individual worse o¤. As such, TTC is Pareto e¢ cient as shown

by Abdulkadiro¼glu and Sönmez (2003), who also prove that TTC is truth-revealing.

However, TTC does not eliminate justi�ed envy because student-school priorities are

ignored in the TTC trade between individuals.

F. Policy Evaluation: The 2007 Reform
The 2007 reform gives priorities for households to access schools that are closest to

their home locations. Depending on households�home locations and strategic types,

the reform may have a¤ected them di¤erently. In order to assess these impacts, we

simulate the counterfactual outcomes for the 2007 applicants had they lived under

the 2006 regime, taking as given the 2006 admissions probabilities. The results gen-

erated from this experiment can be interpreted in two ways: 1) the results are at the

individual level, i.e., �what would have happened to a 2007 applicant had she applied

in 2006?�2) assuming that the 2006 and 2007 cohorts are two i.i.d. random samples

drawn from the same distribution, the results tell us �what would have happened to

all 2007 households if the reform had not happened and if they had played the same

equilibrium as the 2006 cohort?�

The �rst two columns of Table A10 present the fractions of winning and losing

households due to the 2007 reform. About 17% of households gained and 7% of

households lost from the reform. More non-strategic households were a¤ected, with

21% winners and 12% losers. Across educational groups, the high-school educated

group was the most likely to win (18%) and also the most likely to lose (8%) from

the reform. The last two columns of Table A10 show the changes in welfare. Overall,

the gain from the 2007 reform was equivalent to 1,430 euros. The average welfare im-

pacts were smaller for strategic households than for non-strategic households. Across
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educational groups, households with higher education gained more.

G. Additional Tables
G1. Data

Table A1 �Better�Schools Than the Top-Listed One

% Households # Better Sch %Better w/ Higher p

All Households (6836)

Have Sch. Better in Quality, Fees 97.5% 66.6 (44.3) 9.1%

Have Sch. Better in Quality, Dist 41.1% 4.7 (10.6) 14.5%

Have Sch. Better in Fees, Dist 62.2% 14.3 (30.6) 24.3%

Sib School not Top-listed (4025)

Have Sch. Better in Quality, Fees 98.2% 69.4 (44.2) 15.4%

Have Sch. Better in Quality, Dist 39.6% 4.3 (9.1) 25.7%

Have Sch. Better in Fees, Dist 60.2% 12.4 (27.0) 42.7%

% Households: % of households that satisfy the condition speci�ed in each row.

#Better Sch: average (std.dev.) num. of better schools for households with such schools.

%Better w/ higher p: % of better sch with higher admission prob. than one�s top choice.

Table A2 Prob of Admission to one�s First Choice p1ia1(Si)

Enrolled Opted out

All Households 91.8% 75.3%

Assigned within 10 Rounds 92.7% 86.8%

Unassigned within 10 Rounds 48.5% 44.8%

Admission prob in Round 1, averaged for each group of households.

G2. Model Fit

Table A3 Model Fit: Assignment Round 2006 (%)

Edu < HS Edu = HS Edu > HS Single Parents

Data Model Data Model Data Model Data Model

1 93.2 91.8 92.0 91.0 93.7 91.2 94.0 93.4

2 2.7 2.8 3.5 4.0 2.3 4.8 1.9 2.8

� 3 1.6 1.3 1.5 0.9 1.3 0.4 1.4 0.2

Unassigned 2.5 4.2 3.0 3.9 2.7 3.3 2.7 3.6
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Table A4 Model Fit: Top-Listed Schools 2006

Quality Distance (100m) Tuition (100 Euros)

Data Model Data Model Data Model

Parental Edu < HS 7.6 7.6 5.2 6.0 5.4 5.7

Parental Edu = HS 7.9 7.9 7.0 7.1 8.1 8.3

Parental Edu > HS 8.2 8.2 8.7 8.2 9.9 9.6

Single-Parent 8.0 8.0 8.1 8.0 8.6 8.6

Table A5 Model Fit: Enrollment in Public System

2006 2007

Data Model Data Model

Parental Edu < HS 96.9 96.2 96.4 96.2

Parental Edu = HS 97.1 97.0 98.4 97.0

Parental Edu > HS 96.3 96.4 97.8 96.7

Single-Parent 96.1 95.5 97.0 95.8

Table A6 Model Fit: Assignment Round 2007 (%)

Edu < HS Edu = HS Edu > HS Single Parents

Data Model Data Model Data Model Data Model

1 91.0 92.0 90.6 91.8 93.7 93.7 91.3 92.4

2 3.7 3.8 3.2 3.8 2.2 3.1 2.9 3.1

� 3 1.6 1.2 2.2 0.4 1.6 0.4 1.4 0.4

Unassigned 3.5 3.0 4.0 4.0 2.5 2.8 3.3 3.1

Table A7 Model Fit: Top-Listed Schools 2007

Quality Distance (100m) Tuition (100 Euros)

Data Model Data Model Data Model

Parental Edu < HS 7.5 7.6 5.2 5.9 5.3 5.4

Parental Edu = HS 8.0 7.9 6.3 6.8 8.2 8.0

Parental Edu > HS 8.2 8.2 7.8 8.2 9.7 9.5

Single-Parent 8.0 8.0 6.8 7.2 8.2 8.0

G3. Baseline Model vs. Model with Fewer (80%) Strategic Households
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Table A8 Model vs. 80% Strategic (2006)

Data Model 80% Strategic�

Top-Listed School

Quality 7.9 7.9 8.0

Distance (100m) 7.1 7.2 7.4

Fee (100 Euros) 8.1 8.1 8.0

Assignment Round (%)

1 93.0 91.3 88.0

2 2.8 4.0 3.8

� 3 1.5 0.9 1.4

Unassigned 2.7 3.8 6.8

Enrollment

Enrolled Public System (%) 96.7 96.5 95.0
�Adjust the fraction of strategic household to 80% by changing the constant term in the type

distribution function, while keeping all other parameters as they are in the baseline model.

G4. Counterfactual Experiments

Table A9 School Assignment: BM

Quality Distance (100m) Fees (100Euros)

All 7.8 (0.7) 7.3 (7.9) 7.7 (7.4)

Edu < HS 7.4 (0.7) 6.6 (6.9) 5.2 (6.2)

Edu = HS 7.8 (0.6) 7.1 (7.2) 7.7 (7.1)

Edu > HS 8.0 (0.7) 8.1 (8.3) 9.3 (8.0)

Table A10 Impact of the 2007 Reform

Winner(%) Loser(%) �utils �100 Euros

All 16.7 6.7 6.7 (29.5) 14.3 (68.4)

Strategic 16.6 6.5 6.6 (28.7) 14.1 (65.9)

Non-strategic 20.8 11.9 8.2 (43.8) 18.9 (108.4)

Edu < HS 14.7 7.0 4.9 (25.7) 5.0 (26.0)

Edu = HS 18.1 7.7 7.1 (31.0) 22.9 (99.8)

Edu > HS 17.1 5.9 7.6 (30.6) 13.7 (55.2)
�Compare the welfare of a 2007 household under the 2007 regime with its would-be

welfare under the 2006 regime. Winners have higher welfare under the 2007 regime.
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