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Abstract We present asymptotic power-one tests of regression model functional form for heavy tailed

time series. Under the null hypothesis of correct speci…cation the model errors must have a …nite

mean, and otherwise only need to have a fractional moment. If the errors have an in…nite variance

then in principle any consistent plug-in is allowed, depending on the model, including those with non-

Gaussian limits and/or a sub-
p
-convergence rate. One test statistic exploits an orthogonalized test

equation that promotes plug-in robustness irrespective of tails. We derive chi-squared weak limits of

the statistics, we characterize an empirical process method for smoothing over a trimming parameter,

and we study the …nite sample properties of the test statistics.

1 Introduction

Consider a regression model

 = ( ) + () (1)

where  : R £ B ! R is a known response function for …nite   0, continuous and di¤erentiable

in  2 B where B is a compact subset of R, and the regressors  2 R may contain lags of 

or other random variables. We are interested in testing whether ( ) is a version of [j] for

unique 0, without imposing higher moments on , while under mis-speci…cation we only require

[sup2B j()j]  1 and each [sup2B j()( )j]  1 for some tiny   0. Heavy tails

in macroeconomic, …nance, insurance and telecommunication time series are now well documented

(Resnick 1987, Embrechts et al 1997, Finkenstadt and Rootzén 2003, Gabaix 2008). Assume jj 

1 to ensure [j] exists by the Radon-Nikodym theorem, and consider the hypotheses

0 :  [j] = ( 
0)  for unique 0 2 B versus 1 : max

2B
 ( [j] = ( ))  1

1Dept. of Economics, University of North Carolina-Chapel Hill. email : jbhill@email.unc.edu.
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We develop consistent Conditional Moment [CM] test statistics for general alternatives that are

both robust to heavy tails and to a plug-in for 0. Our focus is Bierens’ (1982, 1990) nuisance

parameter indexed CM test for the sake of exposition, with neural network foundations in Gallant

and White (1989), Hornik et al (1989, 1990), and White (1989a), and extensions to semi- and non-

parametric models in Chen and Fan (1999). Let f g

=1 be the sample with size  ¸ 1, let ̂ be

a consistent estimator of 0, and de…ne the residual (̂) :=  ¡ ( ̂). The test statistic is

̂ () =
1

̂(̂ )

Ã
X

=1

(̂)
¡
0

¢
!2

where 
¡
0

¢
= exp

©
0

ª
and  := () (2)

where  is a bounded one-to-one Borel function from R to R, ̂(̂ ) estimates

[(
P

=1 (̂) (0))
2], and  2 R is a nuisance parameter.

If jj  1 and [j] 6= 0 with positive probability then [ (0)] 6= 0 for all  on

any compact ¡ ½ R with positive Lebesgue measure, except possibly for  in a countable sub-

set  ½ ¡ (Bierens 1990: Lemma 1). This seminal result promotes a consistent test: if  and

sup2B j()( )j have …nite 4 + -moments for tiny   0, and the NLLS estimator ̂ = 0

+ (1
12) then ̂ ()


! 2(1) under 0 and ̂ ()


! 1 under 1 for all  2 ¡. Such moment

and plug-in conditions are practically de rigueur (e.g. Hausman 1978, White 1981, Davidson et al

1983, Newey 1985, White 1987, Bierens 1990, de Jong 1996, Fan and Li 1996, Corradi and Swanson

2002, Hong and Lee 2005).

The property [ (0)] 6= 0 under 1 for all but countably many  carries over to non-

polynomial real analytic  : R ! R, including exponential and trigonometric classes (Lee et al 1993,

Bierens and Ploberger 1997, Stinchcombe and White 1998), and compound versions where  may be

empty (Hill 2008a,b), and has been discovered elsewhere in the literature on universal approximators

(Hornik et al 1989, 1990, Stinchcombe and White 1989, White 1989b, 1990). Stinchcombe and White

(1998: Theorem 3.1) show boundedness of  ensures f (0()) :  2 ¡g is weakly dense on the

space on which  lies, a property exploited to prove  is revealing.2

The moment jj  1 is imposed to ensure [j] exists under either hypothesis, but if ( 
0)

is mis-speci…ed then there is no guarantee  is integrable when [2 ] = 1 precisely because ( 
0)

2We use the term "revealing" in the sense of "generically totally revealing" in Stinchcombe and White (1998: p.
299). A member  of a function space H reveals mis-speci…cation [j] 6=  when [( ¡ )] 6= 0. A space H is
generically totally revealing if all but a negligible number of  2 H have this property. In the index function case ()
=  (0()), where the weight  aligns with  and the class H with ¡, this is equivalent to saying all  2 ¡ where
 has Lebesgue measure zero.
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need not be integrable. Suppose  is an integrable scalar with an in…nite variance, and ( ) = (

+ )2. Then j()j = 1 for any  2 B, hence [()j] is not well de…ned for any . Clearly we

only need jj  1 to ensure [j] exists for a test of (1), while heavy tails can lead to empirical

size distortions in a variety of test statistics (de Lima 1997, Hill and Aguilar 2011).

In this paper we apply a trimming indicator ̂() 2 f0 1g to () in order to robustify against

heavy tails. De…ne the weighted and trimmed errors and test statistic

T̂ () =
1

̂2(̂ )

Ã
X

=1

̂¤
(̂ )

!2

where ̂¤
( ) := ()̂()

¡
0

¢


where ̂2( ) is a kernel estimator of [(
P

=1 ̂
¤
(̂ ))2] de…ned by

̂2( ) =
X

=1

 ((¡ ) )
©
̂¤

( ) ¡ ̂¤
( )

ª©
̂¤

( ) ¡ ̂¤
( )

ª

with ̂¤
( ) = 1

P
=1 ̂

¤
( ), and (¢) is a kernel function with bandwidth  ! 1 and 

! 0. By exploiting methods in the tail-trimming literature we construct ̂() in a way that ensures

su¢cient but negligible trimming : ̂() = 0 for asymptotically in…nitely many sample extremes of

() representing a vanishing sample portion. This promotes both Gaussian asymptotics under 0

and a consistent test.

Tail truncation by comparison is not valid when [2 ] = 1 because sample extremes of  are

replaced by tail order statistics of  that increases with : too many large values are allowed for

Gaussian asymptotics (Csörgo et al 1986). On the other hand, trimming or truncating a constant

sample portion of () leads to bias in general, unless  is symmetrically distributed about zero under

0 and symmetrically trimmed or truncated. In some cases, however, symmetry may be impossible

as in a test of ARCH functional form (see Section 4.2).

We assume  () is bounded on any compact subset of its support, covering exponential, logistic,

and trigonometric weights, but not real analytic functions like (1 ¡ )¡1 on [¡1 1]. Otherwise we

must include  (0) in the trimming indicator ̂() which sharply complicates proving T̂ ()

obtains an asymptotic power of one on ¡. A HAC estimator ̂2( ) is required in general unless

 is iid under 0: even if  is a martingale di¤erence ̂(
0 ) may not be due to trimming.

In lieu of the test statistic form a unique advantage exists in heavy tailed cases since 1
P

=1 ̂
¤
(

0 )

is sub-12-convergent. Depending on the data generating process, a plug-in ̂ may converge fast
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enough that it does not impact the limit distribution of T̂() under 0, including estimators with

a sub-12 rate and/or a non-Gaussian limit. Conversely, if ̂

! 0 at a su¢ciently slow rate we

either assume ̂ is asymptotically linear, or in the spirit of Wooldridge (1990) exploit an orthogonal

transformation of ̂¤
( ) that is robust to any ̂ with a minimal convergence rate that may be

below 12 for heavy tailed data. Orthogonal transformations have not been explored in the heavy

tail robust inference literature, and they do not require 12-convergent or asymptotically normal ̂

in heavy tailed cases.

Model (1) covers Nonlinear ARX with random volatility errors of an unknown form, and Nonlinear

strong and semi-strong ARCH. Note, however, that we do not test whether [j¡1 ¡2 ] =

( 
0) . where  = [ 

0
+1]

0 such that the error  =  ¡ ( 
0) is a martingale di¤erence

under 0. This rules out testing whether a Nonlinear ARMAX or Nonlinear GARCH model is

correctly speci…ed. We can, however, easily extend our main results to allow such tests by mimicking

de Jong’s (1996: Theorem 2) extension of Bierens’ (1990: Lemma 1) main result.

Consistent tests of functional form are widely varied with nonparametric, semiparametric and

bootstrap branches. A few contributions not cited above include White (1989a), Chan (1990), Eu-

bank and Spiegelman (1990), Robinson (1991), Yatchew (1992), Härdle and Mammen (1993), Dette

(1996), Zheng (1996), Fan and Li (1996, 2000) and Hill (2012). Inherently robust methods include

distribution-free tests like indicator or sign-based tests (e.g. Brock et al 1996), the -out-of- boot-

strap with  = () applied to (2) (Arcones and Gine 1989, Lahiri 1995), and exact small sample

tests based on sharp bounds (e.g. Dufour et al 2006, Ibragimov and Müller 2010).

In Section 2 we construct ̂() and characterize allowed plug-ins. In Section 3 we discuss re-

centering after trimming to remove small sample bias that may arise due to trimming. We then

construct a p-value occupation time test that allows us to bypass choosing a particular number of

extremes to trim and to commit only to a functional form for the sample fractile. Section 4 contains

AR and ARCH examples where we present an array of valid plug-ins. In Section 5 we perform a

Monte Carlo study and Section 6 contains concluding remarks.

We use the following notation conventions. Let = := (  +1 :  · 1), and let  and 

be …nite integers. min() and max() are the minimum and maximum eigenvalues of a square

matrix  2 R£ . The -norm of stochastic  2 R£ is jjjj := (
P

=1=1j j
)1, and

the spectral norm of  2 R£ is jjjj = (max(
0))12. For scalar  write ()+ := maxf0 g, and
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let [] be the integer part of .   0 is a …nite constant and   0 is a tiny constant, the values of

which may change from line to line; () is a slowly varying function where () ! 1 as  ! 1,

the rate of which may change from line to line.3 If f() ()g¸1 are sequences of functions of 

and sup2¡ j()()j ! 1 we write () » () uniformly on ¡, and if sup2¡ j()()j


! 1 we write ()


» () uniformly on ¡. =) denotes weak convergence on C[¡], the space of

continuous real functions on ¡. The indicator function is () = 1 if  is true, and 0 otherwise. A

random variable is symmetric if its distribution is symmetric about zero.

2 Tail-Weighted Conditional Moment Test

2.1 Tail-Trimmed Equations

Compactly denote the test equation, and the error evaluated at 0:

 ( ) := () (0) and  = (
0).

By the mean-value-theorem the residuals (̂) re‡ect the plug-in ̂, the regression error , and

the response gradient written variously as

() = [()]=1 = ( ) :=



( ) 2 R

We should therefore trim () by setting ̂() = 0 when () or () is an extreme value. This

idea is exploited for a class of heavy tail robust M-estimators in Hill (2011b), and similar ideas are

developed in Hill and Renault (2010) and Hill and Aguilar (2011).

In the following let () 2 f() )g, de…ne tail speci…c observations


(¡)
 () := () (()  0) and 

(+)
 () := () (() ¸ 0) 

and let 
(¢)
()() be the  sample order statistic of 

(¢)
 (): 

(¡)
(1) () · ¢ ¢ ¢ · 

(¡)
() () · 0 and 

(+)
(1) () ¸

¢ ¢ ¢ ¸ 
(+)
() () ¸ 0. Let f :  = 1 2g and f :  = 1 2g be sequences of positive integers taking

3Slow variation implies lim!1 ()() = 1 for any   0 (e.g. a constant, or (ln()) for …nite   0: see
Resnick 1987). In this paper we always assume () ! 1.
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values in f1  g, de…ne trimming indicators

̂ () := 
³

(¡)
(1)

() ·  () · 
(+)
(2)

()
´

̂ () := 
³

(¡)
(1)

() ·  () · 
(+)
(2)

()
´

and ̂ () :=

Y

=1

̂ ()

̂() := ̂() £ ̂()

and trimmed test equations

̂¤
 ( ) :=  ( ) £ ̂ () = () £ ̂ () £  (0)

Thus ̂ () = 0 when any () or () is large. Together with some plug-in ̂ and HAC estimator

̂2(̂ ) we obtain our test statistic T̂ () = ̂¡2 (̂ )(
P

=1 ̂
¤
(̂ ))2.

We determine how many observations of () and () are extreme values by assuming fg

and fg are intermediate order sequences. If fg denotes any one of them, then

1 · 1 + 2    ! 1 and  ! 0

The fractile  represents the number of ( ) trimmed due to a large left- or right-tailed ()

or (). Since we trim asymptotically in…nitely many large values  ! 1 we ensure Gaussian

asymptotics, while trimming a vanishing sample portion  ! 0 promotes identi…cation of 0

and 1.
4 The reader may consult Leadbetter et al (1983: Chapter 2), Hahn et al (1991) and Hill

(2011a) for the use of intermediate order statistics in extreme value theory and robust estimation.

See Section 3 for details on handling the fractiles .

If any  is symmetric then symmetric trimming is used:


³
j()j · 

()
()

()
´

where 
()
 := jj ,  ! 1 and  ! 0 (3)

If a component takes on only one sign then one-sided trimming is appropriate, and if () has a

…nite variance then it can be dropped from ̂(). In general tail thickness does not need to be

4Consider if  is iid and asymmetric under 0, but symmetrically and non-negligibly trimmed 1 = 2 » 

where  2 (0 1). Then ̂()

! 1 under 0 is easily veri…ed. The test statistic reveals mis-speci…cation due entirely

to trimming itself.
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known because our statistic has the same asymptotic properties for thin or thick tailed data, while

unnecessary tail trimming is both irrelevant in theory, and does not appear to a¤ect the test in small

samples.

2.2 Plug-In Properties

The plug-in ̂ needs to be consistent for a unique point 0 2 B.5 In particular, we assume there

exists a sequence of positive de…nite matrices f~g, where ~ 2 R£ and ~ ! 1, and

~ 12

³
̂ ¡ 0

´
= (1)

As we discuss below, in the presence of heavy tails ̂ need not have 12-convergent components,

and depending on the model may have components with di¤erent rates ~
12
 below, at or above 12.

Precisely how fast convergence ̂

! 0 is gauged by exploiting an asymptotic expansion of

̂¡1 (̂ )
P

=1 ̂
¤
(̂ ) around 0. We therefore require the non-random quantile sequences

which the order statistics 
(¢)
()

() and 
(¢)
()

() approach asymptotically. The sequences are

positive functions f() ()g denoting the lower 1
 and upper 2

 quantiles of

() in the sense

 (()  ¡()) =
1


and  (()  ()) =
2


 (4)

Distribution smoothness for () and () ensures f() ()g exist for all  and any cho-

sen fractile policy f1 2g. See Appendix A for all assumptions. By construction f
(¡)
(1)

()


(+)
(2)

()g estimate f¡() ()g and are uniformly consistent, e.g. sup2B j
(+)
(2)

()()¡

1j = (1
12
1). See Hill (2011b: Lemma C.2).

Now construct indicators and a trimmed test equation used solely for asymptotics: in general

write () := (¡() · () · ()), and de…ne

() :=  () £

Y

=1

 () =  () £  () and ¤
 ( ) :=  ( ) £ ()

5Under the alternative 0 is the unique probability limit of ̂, a "quasi-true" point that optimizes a discrepancy
function, for example a likelihood function, method of moments criterion or the Kullback-Leibler Information Criterion.
See White (1982) amongst many others.
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We also require covariance, Jacobian and scale matrices:

2 ( ) := 

Ã
X

=1

©
¤

 ( ) ¡[¤
 ( )]

ª
!2

and ( ) :=





£
¤

 ( )
¤

2 R£1

 ( ) := 2¡2 ( ) £  ( )0  ( ) 2 R

Now drop 0 throughout, e.g.  = (
0), ¤

 () = ¤
(

0 ) and 2 () = 2(
0 ). We may

work with ¤
() for asymptotic theory purposes since

sup
2¡

¯
¯
¯
¯
¯

1

 ()

X

=1

©
̂¤

 () ¡¤
 ()

ª
¯
¯
¯
¯
¯
=  (1) 

while trimming negligibility and response function smoothness ensure the following expansion:

1

̂(̂ )

X

=1

̂¤
(̂ )


»

1

 ()

X

=1

¤
() +  12 ()

³
̂ ¡ 0

´
 (5)

See Lemmas B.2 and B.3 in Appendix A. Thus T̂() tests 0 if ̂

! 0 fast enough in the sense

sup2¡ jj() ~ ¡1 jj = (1). In the following we detail three plug-in cases denoted P1, P2 and P3.

Case P1 (fast (non)linear plug-ins): In this case sup2¡ jj() ~ ¡1 jj ! 0 hence ̂ does

not impact T̂() asymptotically, which is evidently only possible if  and/or  are heavy tailed.

If f g are su¢ciently thin tailed then under regularity conditions minimum distance estimators

̂ are 12-convergent while () !  () = ¡2()()0() is …nite for each  2 ¡.6 In the

presence of heavy tails, however, a unique advantage exists since sup2¡ jj
12
 ()jj = (12) may

hold allowing many plug-ins to satisfy sup2¡ jj() ~ ¡1 jj ! 0. See Section 4 for examples.

Case P2 (slow linear plug-ins): If ~ is proportional to () then ̂ impacts T̂()

asymptotically. This is the case predominantly encountered in the literature since ~ ! ~ and

() !  () for su¢ciently thin tailed f g. At least two solutions exist. First, under the

present case ̂ is assumed to be asymptotically linear and normal, covering many minimum discrep-

ancy estimators when f g are su¢ciently thin tailed, or heavy tail robust linear estimators like

Quasi-Maximum Tail-Trimmed Likelihood (Hill 2011b). Linearity rules out quantile estimators like

LAD and its variants, including Log-LAD for GARCH models with heavy tailed errors (Peng and

Yao 2003) and Least Absolute Weighted Deviations for heavy tailed autoregressions (Ling 2005).

6The rate of convergence for some minimum discrepancy estimators may be below 12, even for thin tailed data, in
contexts involving weak identi…cation, kernel smoothing and in-…ll asymptotics. We implicitly ignored such cases here.



9
Case P3 ((non)linear plug-ins for orthogonal equations): If ~ is proportional to ()

then our second solution is to exploit Wooldridge’s (1990) orthogonal transformation for a new test

statistic, ensuring plug-in robustness and allowing nonlinear plug-ins. Other projection techniques

are also evidently valid (e.g. Bai 2003).

De…ne a projection operator P̂ () and …ltered equations ̂?
( ):

P̂ () = 1 ¡ 0(̂)̂(̂)

Ã
1



X

=1

(̂)
0
(̂) (0)̂(̂)

!¡1

£
1



X

=1

(̂) (0)̂(̂)

̂?
( ) = ̂¤

( ) £ P̂ () 

The test statistic is now

T̂ ?
 () =

1

̂?2 (̂ )

Ã
X

=1

̂?
(̂ )

!2



where ̂?2 ( ) is identically ̂2( ) computed with ̂?
( ).

The asymptotic impact of ̂ is again gauged by using the non-random thresholds f g to

construct orthogonal equations and their variance and Jacobian:

P () := 1 ¡ 0
¡


£


0
 (0)

¤¢¡1
£

£
 (0)

¤
and ?

 ( ) = ¤
 ( ) £ P ()

?2 ( ) := 

Ã
X

=1

n
?

 ( ) ¡[?
 ( )]

o
!2

and ? ( ) :=





h
?

 ( )
i

2 R£1

 ? ( ) := 2?¡2 ( ) £ ? ( )0 ? ( ) 2 R

Notice P () is ()-measurable, and uniformly 1-bounded by Lyapunov’s inequality and bound-

edness of  (), thus by dominated convergence [?
()] ! 0 under 0. By imitating expansion

(5) and arguments in Wooldridge (1990), it can easily be shown if  ? ()12(̂ ¡ 0) = (1) then

̂?¡1 (̂ )
P

=1 ̂
?
(̂ )


» ?¡1 ()

P
=1

?
(). In general the new statistic T̂ ?

 () is robust

to ̂, allowing non-linear estimators, as long as

~ 12

³
̂ ¡ 0

´
= (1) and lim sup

!1
sup
2¡

°
°
° ? () ~ ¡1

°
°
°  1 (6)

2.3 Main Results

Appendix A contains all assumptions concerning the fractiles and non-degeneracy of trimmed mo-

ments (F1-F2); identi…cation of the null (I1); the kernel and bandwidth for the HAC estimator (K1);
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the plug-in (P1-P3); moments and memory of regression components (R1-R4); and the test weight

(W1). We state the main results for both T̂() and T̂ ?
 (), but for the sake of brevity limit discussions

to T̂(). Throughout ¡ is a compact subset of R with positive Lebesgue measure.

Our …rst result shows tail-trimming does not impact the ability of  (0) to reveal mis-speci…cation.

LEMMA 2.1. Let () denote either ¤
() or ?

(). Under the null [()] ! 0. Fur-

ther, if test weight property W1 and the alternative 1 hold then lim inf!1 j[()]j  0 for all

 2 ¡ except possibly on a set  ½ ¡ with Lebesgue measure zero.

Remark : Under 1 it is possible in small samples for [¤
()] = 0 due to excessive trimming,

and j[¤
()]j ! 1 due to heavy tails. The test weight  () therefore is still revealing under tail-

trimming for su¢ciently large .

Next, the test statistics converge to chi-squared processes under 0 and are consistent. Plug-in

cases P1-P3 are discussed in Section 2.2.

THEOREM 2.2. Let F1-F2, I1, K1, R1-R4 and W1 hold.

 Under 0 and plug-in cases P1 or P2 there exists a Gaussian process f() :  2 ¡g on C[¡]

with zero mean, unit variance and covariance function [(1)(2)] such that fT̂() :  2 ¡g =)

f()2 :  2 ¡g.

 Under 1 and P1 or P2, T̂()

! 1 8 2 ¡ where  has Lebesgue measure zero.

 Under plug-in case P3 T̂ ?
 () satis…es cases ( ) and ( ).

Remark 1: The literature o¤ers a variety of ways to handle the nuisance parameter . Popular

choices include randomly selecting ¤ 2 ¡ (e.g. Lee et al 1993), or computing a continuous test

functional (T̂()) like the supremum sup2¡ T̂() and average
R
¡ T̂()(), where () is a

continuous measure (Davies 1977, Bierens 1990). In the latter case (T̂())

! (()2) =: 0 under

0 by the mapping theorem.

Hansen’s (1996) bootstrapped p-value for non-standard 0 exploits an iid Gaussian simulator.

The method therefore applies only if  is a martingale di¤erence under 0 and the trimmed error

 becomes a martingale di¤erence su¢ciently fast in the sense ([¤2
()])12[j=¡1]

! 0. It therefore su¢ces for  to be iid and symmetric under 0 and symmetrically trimmed since

then [j=¡1] = [] = 0, or if  is asymmetric and [] = 0 under either hypothesis then

 can be symmetrically trimmed with re-centering as in Section 3, below. See Hill (2011c: Section

C.1), the supplemental appendix to this paper, for details on Hansen’s p-value under tail-trimming.
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Remark 2: As long as 2 () = [¤

()¤
()0] £ (1 + (1)) then a HAC estimator is not

required, including when  becomes a martingale di¤erence su¢ciently fast under 0 as above.

If we do not use a plug-in robust equation then an estimator ̂2(̂ ) must control for sampling

error associated with ̂. For example, if ̂ is the NLLS estimator then (e.g. Bierens 1990: eq. (14))

̂2(̂ ) =
X

=1

2 (̂)̂(̂) £
n
 (0) ¡ ̂0̂

¡1
 ̂¤(̂)

o2
 (7)

where ̂¤() := ()̂(), ̂ := 1
P

=1 ̂
¤
(̂) (0) and ̂ := 1

P
=1 ̂

¤
()̂¤()0.

However, if ?2 () » [?
()?

()0] then by orthogonality we need only use

̂?2 (̂ ) =
X

=1

̂?
(̂ )̂?

(̂ )0 (8)

3 Fractile Choice

We must choose how much to trim  for each  2 f g and any given . We …rst present a

case when symmetric trimming with re-centering is valid even when  is asymmetric under 0. We

then discuss an empirical process method that smooths over a class of fractiles.

Symmetric Trimming with Re-Centering If [] = 0 even under the alternative, and

 is independent of  under 0, then we may symmetrically trim for simplicity and re-center to

eradicate bias that arises due to trimming, and still achieve a consistent test statistic. The test

equation is

̂¤
( ) =

Ã

()̂ () ¡
1



X

=1

()̂ ()

!

£  (0) (9)

where ̂ () = ̂ ()
Q

=1 ̂ () as before, with symmetric trimming indicators ̂ () :=

(j()j · 
()
()

()) and ̂ () := (j()j · 
()
()

()). By independence ¤
( ) =

(() () ¡ [() ()]) £  (0) satis…es [¤
()] = 0 under 0 for any f g, hence

identi…cation I1 is trivially satis…ed. Under 1 the weight  () is revealing by Lemma 2.1 since []

= 0,  () is bounded, and trimming is negligible: lim inf!1 j[¤
()]j = lim inf!1 j[ (0)]j

 0 8 2 ¡. A test of linear AR where the errors may be governed by a nonlinear GARCH process,

or a test of linear ARCH, provide natural platforms for re-centering. See Section 4 for ARCH.

The moment condition [] = 0 under either hypothesis rules out some response functions de-

pending on the tails of f g. See Section 1 for an example.
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P-Value Occupation Time Assume symmetric trimming to reduce notation and de…ne

the error moment supremum  := arg supf  0 : jj
  1g. Under 0 any intermediate order

sequences f g are valid, but in order for our test to work under 1 when  may be exceptionally

heavy tailed   1, we must impose 
2(1¡)(2¡) ! 1 to ensure su¢cient trimming for test

consistency (see Assumption F1.b in Appendix A). Thus  » () is valid for any slowly varying

() ! 1. Consider  =  »  ln() where  is taken from a compact set ¤ := [ 1] for

tiny   0, although any slowly varying () ! 1 may replace ln(). The point  = 0 is ruled out

because the untrimmed T̂(0) is asymptotically non-chi-squared under 0 when [2 ] = 1.

We must now commit to some . Other than an arbitrary choice, Hill and Aguilar (2011) smooth

over a space of feasible 0 by computing p-value occupation time. We construct the occupation time

below, and prove its validity for T̂() and T̂ ?
 () in Appendix B. The following easily extends to 

6= , asymmetric trimming, and functionals (T̂()) on ¡.

Write T̂( ) and T̂ ?
 ( ) to reveal dependence on , let ( ) denote the asymptotic p-value

1 ¡ (T̂( )) where  is the 2(1) distribution, and de…ne the -level occupation time

( ) :=
1

1 ¡ 

Z 1


 (( )  ) 2 [0 1]  where  2 (0 1)

Thus ( ) is the proportion of 0 satisfying ( )   hence rejection of 0 at level .

Similarly, de…ne the occupation time ? ( ) for T̂ ?
 ( ).

THEOREM 3.1 Let F1-F2, I1, K1, P1 or P2, R1-R4 and W1 hold. Let f() :  2 ¤g

be a stochastic process that may be di¤erent in di¤erent places: in each case it has a version that

has uniformly continuous sample paths, and () is uniformly distributed on [0 1]. Under the null

( )

! (1 ¡ )¡1

R 1
 (()  ) and ? ( )


! (1 ¡ )¡1

R 1
 (()  ), and under the

alternative ( )

! 1 and ? ( )


! 1 8 2 ¡ except possibly on subsets with measure zero.

Remark 1: Since () is a uniform random variable it follows lim!1  (( )  j0) 

. A p-value occupation test therefore rejects 0 at level  if ( )  . In practice a discretized

version is computed, for example

̂( ) :=
1



X

=1

 (( )  ) £  ( ¸ ) (10)

where  :=
P

=1 ( ¸ ) is the number of discretized points in [ 1].
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Remark 2: In Section 4 we show ̂ has a larger impact on T̂( ) in small samples when

the error has an in…nite variance   2, each  has a …nite mean   1, and the number of

trimmed errors  is large (see Remark 3 of Lemma 4.1). This translates to the possibility of plug-in

sensitivity of ( ) in small samples. We show in our Monte Carlo study of Section 5 that when

  2 and   1 the occupation time ( ) results in size distortions that are eradicated when

the plug-in robust ̂? ( ) is used.

In Figure 1 we plot sample paths f( ) ? ( ) :  2 [01 10]g based on two samples fg

=1

of size  = 200: one sample is drawn from an AR(1) process and the other from a Threshold

AR(1) process, each with iid Pareto errors  and tail index 15 See Section 5 for simulation details.

We estimate an AR(5) model by OLS, compute T̂( ) and T̂ ?
 ( ) with weight  (0()) =

expf0()g, () = [1 arctan(~¤ )
0]0 where ~¤ is centered ~ = [¡1  ¡5]

0, and uniformly ran-

domize  on [1 2]6. In this case at the 5% level ̂ ̂
?
 = 0 0 for the AR sample hence we fail to

reject 0, and ̂ ̂
?
 = 59 10 for the SETAR sample hence we reject 0.

Notice in the AR case ( ) is smallest for large  ¸ 9, and ( )  ? ( ) for most

: ( ) is more likely to lead to a rejection than the plug-in robust ? ( ) and for large .

Although we only use one AR sample here, in Section 5 we show plug-in sensitivity does indeed lead

to over-rejection of 0.

[Insert Figure 1 about here]

4 Plug-In Choice and Veri…cation of the Assumptions

We …rst characterize  () to show how fast ̂ in T̂() must be in view of expansion (5). Synony-

mous derivations carry over to portray  ? (). We then verify the assumptions for AR and ARCH

models and several plug-in estimators. De…ne moment suprema  := arg supf  0 : jj
  1g

and  := arg supf  0 : jj
  1g.

LEMMA 4.1. Let F1-F2, I1, R1-R4 and W1 hold. If  · 1 then assume  (jj  ) =


(1 + (1)) for some   0. Let () ! 1 be slowly varying, and let fLg be a sequence of

positive constants: lim inf!1 L ¸ 1 and L = (ln()), and if  is …nite dependent then L =

. In this following () and L may be di¤erent in di¤erent places.

 Let minfg  1. If   2 then  () = (); if  = 2 then  () » (); and if   2

then  () » ()2¡1L.
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 Let some   1. If   2 then  () » max:1f()

2¡2g; if  = 2 then  ()

» max:1f()
2¡2g(); and if   2 then  () » max:1f()

2¡2g

£ ()2¡1L.

 If minfg = 1 then replace max:1f()
2¡2g in ( ) with ().

Remark 1: The term L arises due to -mixing dependence and heavy tails. Clearly 2() »

[2
] if  is …nite dependent or has a …nite variance, but otherwise we can only show 2() »

[2
] £ (ln()), cf. Hill (2011b: Lemma B.2).

Remark 2: If [2 ] = 1 then  () = () as long as all   1, hence ̂ may be sub-

12-convergent. This arises, for example, in integrable AR models or ARCH models with square

integrable errors as we verify below.

Remark 3: If   2 and each   1 then  () » ()2¡1L. Combine this with

expansion (5) to deduce a higher error trimming rate  ! 1 ampli…es the impact of ̂ on the

test statistic T̂() in small samples, even when fast plug-in Assumption P1 holds. This suggests the

plug-in robust statistic T̂ ?
 () should be used when  is chosen to be large relative to . This is

supported by experiments in Section 5 where the p-value occupation which smooths over small and

large  performs substantially better when T̂ ?
 () is used.

4.1 Linear AR

Consider a stationary AR()  = 00 +  where  = [¡1  ¡]
0,  is iid and  [] = 0.

Assume  has an absolutely continuous symmetric distribution with a uniformly bounded density

sup2R j() ( · )j  1, and Paretian tail:

 (jj  ) = ¡ (1 +  (1)) ,   0,   1 (11)

Since  is symmetric with a power law tail and the same index  (Brockwell and Cline 1985), and

 = ¡, we use symmetric trimming (3) with common fractiles  =  denoted . Let ̂

be computed by OLS, LAD, Lease Weighted Absolute Deviations [LWAD] by Ling (2005), Least

Tail-Trimmed Squares [LTTS] by Hill (2011b), or Generalized Method of Tail-Trimmed Moments

[GMTTM] by Hill and Renault (2010) with estimating equations [()¡]

=1 for some  ¸ .7

7Other over-identifying restrictions can easily be included, but the GMTTM rate my di¤er from what we cite in the
proof of Lemma 4.2 if they are not lags of . See Hill and Renault (2010).
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LEMMA 4.2. Assumptions F2, I1, and R1-R4 hold. If   2 then () » ()2¡1

and if then () » () uniformly on ¡. Therefore each ̂ satis…es P1 and P3 if [2 ] = 1

and P3 if [2 ]  1; and if [2 ]  1 then only OLS, LTTS and GMTTM satisfy P2.

Remarks: The F1 fractile properties are controlled by the analyst. Each plug-in is super-12-

convergent when [2 ] = 1, and OLS and LAD have non-Gaussian limits when [2 ] = 1 (Davis

et al 1992, Ling 2005, Hill and Renault 2010, Hill 2011b), while 
12
 () = (12) by Lemma 4.1.

Hence each ̂ satis…es fast plug-in P1. However, if  has a …nite variance then  () »  and

each ̂ has rate 12, ruling out LAD and LWAD for the non-orthogonalized T̂() since P2 requires

estimator linearity (cf. Davis et al 1992).

4.2 Linear ARCH

Now consider a strong-ARCH()  =  where 

» (0 1) and 2 = 0 +

P
=1 

0
 
2
¡ = 00, 

0

 0, and 0 ¸ 0. Assume at least one 0  0 for brevity, let
P

=1 
0
  1, and assume the distribution

of  is non-degenerate, symmetric, absolutely continuous and bounded sup¸0 j() ( · )j 

1. Let  be the moment supremum arg supf  0 : jj
  1g. If  2 (2 4] then assume 

has tail (11) with index .

A test of omitted ARCH nonlinearity can be framed in terms of errors 2 ¡ 1 or 2 ¡ 00 = (2

¡ 1)2 . Since the former only requires 2 and not 2 to be integrable, consider () := 2 () ¡ 1 :=

2 (
0) ¡ 1. In this case ()()j0 = ¡2

2
 has tails that depend solely on the iid error 

since we impose ARCH e¤ects 0  0: jj
2
 jj ·  . We therefore do not need to use information

from  for trimming. The error  = 2 ¡ 1 may be asymmetric but we can symmetrically trim

with re-centering as in Section 3. The trimmed equation with re-centering assuming ARCH e¤ects is

̂¤
( ) = f̂() ¡ 1

P
=1 ̂()g £  (0) where ̂() := (j()j · 

()
()

()).

In the following we consider plug-ins ̂ computed by QML, Log-LAD by Peng and Yao (2003),

Quasi-Maximum Tail-Trimmed Likelihood [QMTTL] by Hill (2011b), or GMTTM with QML-type

equations f2 () ¡ 1g() where () = [(0¡)
¡1¡]


=0 for some  ¸ 0 (Hill and Renault 2010).

LEMMA 4.3. Assumptions F2, I1 and R1-R4 hold. Further  GMTTM and QMTTL satisfy

P1 if  2 (2 4], P2 if   4, and P3 in general;  QML satis…es P2 and P3 if  ¸ 4, but does

not satisfy P1-P3 when  2 (2 4); . Log-LAD satis…es P1 if [4 ] = 1, it does not satisfy P2 if

  4, and it satis…es P3 in general.
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Remarks: QML is too slow when the ARCH error has an in…nite fourth moment  2 (2 4).

This arises due both to feedback with the error , and to the F1.b lower bound on the error trimming

rate 
2(1¡)(2¡) ! 1 which ensures test consistency when jj = 1: the former implies

jj~jj = 1¡2 = (12) (Hall and Yao 2003), while the latter guarantees inf2¡ jj()jj1¡2

! 1. Each remaining estimator has a Gaussian limit since   2. Log-LAD is not linear so

orthogonalization is required when [4 ]  1.

5 Simulation Study

We now present a small scale simulation study where we test for omitted nonlinearity in three models:

linear AR(2)  = 8¡1 ¡ 4¡2 + , Self-Exciting Threshold AR(1) [SETAR]  = 8¡1(¡1 

0) ¡ 4¡1(¡1 ¸ 0) + , and Bilinear [BILIN]  = 9¡1¡1 + . We generate 10,000 samples

of size  2 f200 800 5000g by using a starting value 1 = 1, generating 2 observations of  and

retaining the last . The errors fg are either iid (0 1), symmetric Pareto  ( · ¡) =  ( ¸ )

= 5(1 + )¡ with index  = 15; or IGARCH(1,1)  =  where 2 = 3 + 42¡1 + 62¡1 and



» (0 1), with starting value 21 = 3. The errors  therefore have possible moment suprema 

2 f15 21g. Each process is stationary geometrically ergodic and therefore geometrically -mixing

(Pham and Tran 1985, An and Huang 1996, Meitz and Saikkonen 2008). We estimate an AR(5)

model  =
P5

=1 
0
 ¡ +  by OLS for each series, although LTTS and LWAD render essentially

identical results (cf. Section 4.1, and Hill 2011b).

5.1 Tail-Trimmed CM Test

Write  := [¡1  ¡]
0. Recall from Section 3  » () for slowly varying () ! 1

promotes test consistency when jj = 1 under the alternative. Considering  and ¡ have

the same moment supremum  and are symmetric under 0, we simply use symmetric trimming

with  = [ ln()] for each  and ¡. We re-center by using ̂¤
( ) de…ned in (9), and

compute the orthogonal equations ̂?
( ) with the re-centered ̂¤

( ) and operator P̂ ()

= 1 ¡ 0̂(̂) £ (
P

=1 
0
 (0)̂(̂))

¡1 £
P

=1  (0)̂(̂). We use an exponential

weight  (0()) = expf0()g and argument () = [1 arctan(¤ )
0]0 2 R6 with ¤ =  ¡

1
P

=1  (cf. Bierens 1990: Section 5), and then compute T̂() and T̂ ?
 (). We use scale

estimators (7) and (8) with  =  for the sake of comparison with our choice of additional test



17
statistics discussed below. We randomly draw  from a uniform distribution on ¡ = [1 2]6 for each

sample generated, and …x  = 025 or compute p-value occupation times ̂( ) and ̂? ( ) on

[01 10] a la (10) for nominal levels  2 f01 05 10g. Notice  = 025 implies very few observations

are trimmed, e.g. at most 1.5% of a sample of size 800.8

5.2 Tests of Functional Form

The remaining tests are based on untrimmed versions of T̂() and T̂ ?
 () where critical values

are obtained from a 2(1) distribution; Hong and White’s (1995) non-parametric test, Ramsey’s

(1969) Regression Error Speci…cation Test [RESET], McLeod and Li’s (1983) test, and a test pro-

posed by Tsay (1986). Hong and White’s (1995) statistic is ̂ = (2 ln)¡12(¡2
P

=1 ̂̂ ¡

ln) with components 2 := 1
P

=1 ̂
2
 and ̂ := ̂ ¡ ̂

0

, and nonparametric estimator ̂ =

P[ln()]
=1  expf0g of [j], cf. Gallant (1981) and Bierens (1990: Corollary 1). The parameters

 are for each sample uniformly randomly selected from ¡, and  is estimated by least squares.9 If

certain regularity conditions hold, including independence of  and [4 ]  1, then ̂

! (0 1)

under 0, while ̂ ! 1 in probability under 1, hence a one-sided test is performed. The RE-

SET test is an F-test on the auxiliary regression ̂ = 00 +
P1

=2

P2
=2 


¡ +  where we use

1 = 2 = 3; the McLeod-Li statistic is
P

=1(̂
2
 ¡ 2)(̂

2
¡ ¡ 2)

P
=1(̂

2
 ¡ 2)

2 with lags  =

3; and Tsay’s test is based on …rst regressing vech[
0
] = 0 + , and then computing  :=

P
=1(̂̂)[

P
=1 ̂̂

0
]
¡1

P
=1(̂̂

0
): 


! 2(( + 1)2) under 0 as long as [4 ]  1.

5.3 Simulation Results

See Tables 1-3 for test results, where empirical power is adjusted for size distortions. We only present

results for  2 f200 800g: see the supplemental appendix Hill (2011c: Section C.4) for  = 5000.

Write T̂-Fix or T̂-OT for tests based on …xed  = 025 or occupation time. The results strongly

suggest orthogonalization is required if we use occupation time because T̂-OT exhibits large size

distortions, while T̂ ?
 -OT has fairly sharp size and good power. This follows from the dual impact

of sampling error associated with ̂ and the loss of information associated with trimming. Our

simulations show this applies in general, irrespective of heavy tails, while Remark 3 of Lemma 4.1

shows when  =  2 (1 2) then a large amount of trimming  ampli…es sensitivity of T̂ to ̂ in

8 If  = 800 then  = [025£ 800 ln(800)] = 2 for each f ¡1  ¡5g. Hence at most 2£ 6 = 12 observations
are trimmed, which is 15% of 800.

9See Hong and White (1995: Theorem 3.2) for defense of a slowly varying series length ln()
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small samples. Orthogonalization should play a stronger role when  is large, hence T̂ ?

 -OT should

dominate T̂-OT, at least when the variance is in…nite.

In heavy tailed cases T̂-Fix and T̂ ?
 -OT in general exhibit the highest power, although all tests

exhibit low power when the errors are IGARCH and  2 f200 800g. It should be noted the Hong-

White, RESET, McLeod-Li and Tsay tests are all designed under the assumption  is independent

under 0 and [4 ]  1, hence IGARCH errors are invalid due both to feedback and heavy tails. If

 is iid Gaussian then trimming does not a¤ect the power of the CM statistic, although Hong-White,

McLeod-Li and Tsay tests exhibit higher power.

The untrimmed CM statistics tend to under-reject 0 and obtain lower power when the error

variance is in…nite. RESET and McLeod-Li statistics under-reject when   2, while RESET

performs fairly well for an AR model with IGARCH error, contrary to asymptotic theory. The

McLeod-Li statistic radically over-rejects 0 for AR-IGARCH, merely verifying the statistic was

designed for iid normal errors under 0. Tsay’s F-statistic radically over-rejects for iid and GARCH

errors with in…nite variance: empirical power and size are above .60. In these cases heavy tails and/or

conditional heteroscedasticity simply appear as nonlinearity (cf. de Lima 1997, Hong and Lee 2005,

Hill and Aguilar 2011). Hong and White’s (1995) non-parametric test exhibits large, and sometimes

massive, size distortions when variance is in…nite, even for iid errors.

6 Conclusion

We develop tail-trimmed versions of Bierens’ (1982, 1990) and Lee, White and Granger’s (1993) tests

of functional form for heavy tailed time series. The test statistics are robust to heavy tails since

trimming ensures standard distribution limits, while negligible trimming ensures the revealing nature

of the test weight is not diminished. We may use plug-ins that are sub-12-convergent or do not

have a Gaussian limit when tails are heavy, depending on the model and error-regressor feedback,

and Wooldridge’s (1990) orthogonal projection promotes robustness to an even larger set of plug-ins.

A p-value occupation time test allows the analyst to by-pass the need to choose a trimming portion

by smoothing over a class of fractiles. A large amount of trimming, however, may have an adverse

impact on the test in small samples due to the loss of information coupled with sampling error due

to the plug-in. This implies the p-value occupation time may be sensitive to the plug-in in small

samples, but when computed with the plug-in robust orthogonal test equation delivers a sharp test
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in controlled experiments.

Future work may seek to include other trimming techniques like smooth weighting; adaptive

methods for selecting the fractiles; and extensions to other classes of tests like Hong and White’s

(1995) nonparametric test for iid data, and Hong and Lee’s (2005) spectral test which accommodates

conditional heteroscedasticity of unknown form.

APPENDIX A: Assumptions10

Write thresholds and fractiles compactly (¢) = maxf(¢) (¢)g and  = max f 1  g,

de…ne 2( ) := 
£
¤2

 ( )
¤

and

( ) := ¡ ()
¡
0

¢
, ¤( ) := ( )(), ̂¤( ) = ()̂()

¤( ) :=
1



X

=1

¤( ), ̂¤( ) :=
1



X

=1

̂¤( )

Drop 0, de…ne = = (+1  :  · ), and let ¡ be any compact subset of R with positive

Lebesgue measure. Six sets of assumptions are employed. First, the test weight is revealing.

W1 (weight).

  : R ! R is Borel measurable, analytic and non-polynomial on some open interval 0 µ R

containing 0.

 sup2 j ()j ·  and inf2 j ()j  0 on any compact subset  ½  , with  the support of

 .

Remark : The W1.b upper bound allows us to exclude  (0) from the trimming indicators

which greatly simpli…es proving test consistency under trimming, and is mild since it applies to

repeatedly cited weights (exponential, logistic, sine, cosine). The lower bound in W1.b helps establish

a required stochastic equicontinuity condition for weak convergence when  may be heavy tailed, and

is easily guaranteed by centering  (0) if necessary.

Second, the plug-in ̂ is consistent. Let ~ be =-measurable mappings from B ½ R to R,

 ¸ , and f~g a sequence of non-random matrices ~ 2 R£ where ~ ! 1. Stack equations

10We ignore for notational economy measurability issues that arise when taking a supremum over an index set. Assume
all functions in this paper satisfy Pollard’s (1984) permissibility criteria, the measure space that governs all random
variables is complete, and therefore all majorants are measurable. Probability statements are therefore with respect to
outer probability, and expectations over majorants are outer expectations. Cf. Dudley (1978) and Stinchcombe and
White (1992).



20
M¤

( ) := [¤
 ( )  ~0

()]0 2 R+1, and de…ne the covariances ~ () :=
P

=1[f ~()

¡ [ ~()]g £ f ~() ¡ [ ~()]g0] and S¤
( ) :=

P
=1[fM¤

( ) ¡ [M¤
( )]g

£ fM¤
( ) ¡ [M¤

( )]g0], hence [S¤
( )]+1+1=2=2 = ~ (). We abuse notation since

S¤
( ) may not exist for some or any . Let f.d.d. denote …nite dimensional distributions.

P1 (fast (non)linear plug-ins). ~
12
 (̂ ¡ 0) = (1) and sup2¡ jj() ~ ¡1 jj ! 0.

P2 (slow linear plug-ins). S¤
() exists for each , speci…cally sup2¡ jjS¤

()jj  1 and

lim inf!1 inf2¡ min(S
¤
())  0. Further:

. ~
12
 (̂ ¡ 0) = (1) and ~ » K()(), where K : ¡ ! R£ and inf2¡ min(K())  0.

 ~
12
 (̂ ¡ 0) = ~

P
=1f ~ ¡ [ ~]g £ (1 +  (1)) +  (1) where non-stochastic ~ 2

R£ has full column rank and ~
~¡1 ~0 ! 

 The f.d.d. of S¤
 ()¡12 fM¤

() ¡ [M¤
()]g belong to the same domain of attraction as the

f.d.d. of ¡1 ()f¤
() ¡ [¤

()]g.

P3 (orthogonal equations and (non)linear plug-ins). ~
12
 (̂ ¡ 0) = (1) and

lim sup!1 sup2¡ jj ? () ~ ¡1 jj  1.

Remark : ̂ e¤ects the limit distribution of T̂() under P2 hence we assume ̂ is linear. P3

is invoked for orthogonalized equations ̂?
( ).

Third, identi…cation under trimming.

I1 (identi…cation by ¤
()). Under the null sup2¡ j¡1 ()[¤

 ()]j ! 0.

Remark : If () is asymmetric there is no guarantee [¤
 ()] = 0, although [¤

 ()]

! 0 under 0 by trimming negligibility and dominated convergence. The fractiles f g must

therefore promote I1 for asymptotic normality in view of expansion (5) and mean centering. Since

sup2¡f()g = (1) by Lemma B.1, below, I1 implies identi…cation of 0 su¢ciently fast. The

property is super‡uous if [] = 0 under either hypothesis,  is independent of  under 0, and

re-centering is used since then [¤
 ()] = 0 under 0 (see Section 3).

Fourth, the DGP and properties of regression model components.

R1 (response). (¢ ) is for each  2 B a Borel measurable function, continuous and di¤erentiable

on B with Borel measurable gradient () = ( ) := ()( ).

R2 (moments). jj  1, and (sup2B j( )j)  1 and (sup2B j()( )j)  1

for each  and some tiny   0.

R3 (distribution).
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 The …nite dimensional distributions of f g are strictly stationary, non-degenerate and ab-

solutely continuous. The density function of () is uniformly bounded sup2B sup2Rf() (()

· )g  1.

 De…ne () := argsup  0fj()j  1g 2 (01], write  = (
0), and let B2 denote

the set of  such that the error variance is in…nite () · 2. If () · 2 then  (j()j  ) =

()¡()(1 + (1)) where inf2B2 ()  0 and inf2B2 ()  0, and (1) is not a function of

, hence lim!1 sup2B2 j()¡1() (j()j  ) ¡ 1j = 0.

R4 (mixing). f g are geometrically -mixing: supA½=+1+
j (Aj=

¡1) ¡  (A)j = () for 

2 (0 1).

Remark 1: Response function smoothness R1 coupled with distribution continuity and bound-

edness R3.a imply
P

=1 ̂
¤
(̂ ) can be asymptotically expanded around 0, cf. Hill (2011b: Ap-

pendices B and C). Power-law tail decay R3.b is mild since it includes weakly dependent processes

that satisfy a central limit theorem (Leadbetter et al 1983), and simpli…es characterizing tail-trimmed

variances in heavy tailed cases by Karamata’s Theorem.

Remark 2: The mixing property characterizes nonlinear AR with nonlinear random volatility

errors (Pham and Tran 1985, An and Huang 1996, Meitz and Saikkonen 2008).

Fifth, we restrict the fractiles and impose non-degeneracy under trimming. Recall  = maxf

1  g, the R3.b moment supremum   0, and 2( ) = [¤2
( )].

F1 (fractiles).   ln() ! 1;  if  2 (0 1) then 
2(1¡)(2¡) ! 1.

F2 (non-degenerate trimmed variance). lim inf!1 inf2B2¡f
2
( )g  0 and

sup2B2¡f
2
( )2( )g = (1).

Remark 1: F1.a sets a mild lower bound on  that is useful for bounding trimmed variances

2( ) and 2( ). F1.b sets a harsh lower bound on  if, under mis-speci…cation,  is not

integrable: as  & 0 we must trim more  %  in order to prove a LLN for ¤
() which is used

to prove T̂() is consistent. Any  » () for slowly varying () ! 1 satis…es F1.

Remark 2: Distribution non-degeneracy under R3.a coupled with trimming negligibility ensure

trimmed moments are not degenerate for su¢ciently large , for example lim inf!1 inf2B2¡ 
2
( )

 0. The long-run variance 2( ), however, can in principle be degenerate due to negative depen-

dence, hence F2 is imposed. F2 is standard in the literature on dependent CLT’s and exploited here

for a CLT for ¤
( ), cf. Dehling et al (1986).
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Finally, the kernel (¢) and bandwidth .

K1 (kernel and bandwidth). (¢) is integrable, and a member of the class f : R ! [¡1 1] j (0)

= 1 () = (¡) 8 2 R
R1
¡1 j()j  1

R1
¡1 j()j  1 (¢) is continuous at 0 and all

but a …nite number of pointsg where () := (2)¡1
R1
¡1 ()  1. Further

P
=1 j(( ¡

))j = (2) max1·· j
P

=1 (( ¡ ))j = () and  = ().

Remark : Assumption K1 includes Bartlett, Parzen, Quadratic Spectral, Tukey-Hanning and

other kernels. See de Jong and Davidson (2000) and their references.

APPENDIX B: Proofs of Main Results

We require several preliminary results proved in the supplemental appendix Hill (2011c: Section

C.3). Throughout the terms (1), (1), (1) and (1), do not depend on ,  and . We only

state results that concern ̂¤
( ) and ¤

( ), since companion results extend to ̂?
( ) and

?
( ). Let F1-F2, K1, R1-R4, and W1.b hold. Recall 2( ) = [¤2

( )].

LEMMA B.1 (variance bounds).

 2( ) = 
¡
max

©
1 ([¤

( )])2
ª¢

, sup
2¡

(
2()

max
©
1 ([¤

()])2
ª

)

= ( ln());

 2() = L
2
() = (2) for some sequence fLg that satis…es lim inf!1L  0, L =  if

 is …nite dependent or [2 ]  1, and otherwise L ·  ln(min2f12gfg) ·  ln().

LEMMA B.2 (approximations).

 sup2¡ j¡1 ()
P

=1f̂
¤
() ¡¤

()gj = (1).

 De…ne ̂¤( ) := ̂¤
( ) ¡ ̂¤

( ) and ¤( ) := ¤
( ) ¡ ¤

( ). If additionally

P1 or P2 holds sup2¡ j¡2 ()
P

=1 (( ¡ ))f̂
¤
(̂ )̂¤(̂ ) ¡ ¤()¤()gj = (1).

LEMMA B.3 (expansion). Let  ~ 2 B. For some sequence f¤g in B satisfying jj¤ ¡

~jj · jj ¡ ~jj, and for some tiny   0 and arbitrarily large …nite   0 we have sup2¡ j̂¤
( )

¡ ̂¤
(

~ ) ¡ ̂¤(¤ )0( ¡ ~)j = ¡ £ jj ¡ ~jj1 £ (1).

LEMMA B.4 (Jacobian). Under P1 or P2 sup2¡ jj¤(̂ ) ¡ ()(1 + (1))jj = (1).

LEMMA B.5 (HAC). Under P1 or P2 sup2¡ j̂2(̂ )2() ¡ 1j

! 0.

LEMMA B.6 (ULLN). Let inf¸ j[¤
()]j  0 for some  2 N and all  2 ¡ where

 has measure zero. Then sup2¡f1
P

=1
¤
()

£
¤

()
¤
g


! 1.

LEMMA B.7 (UCLT). f¡1 ()
P

=1(
¤
() ¡ [¤

()]) :  2 ¡g =) f() :  2 ¡g,

a scalar (0 1)-Gaussian process on C [¡] with covariance function [(1)(2)] and a.s. bounded
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sample paths. If P2 also holds then fS

¡12
 ()

P
=1fM

¤
() ¡ [M¤

()] :  2 ¡g =) fZ() :  2

¡g an  + 1 dimensional Gaussian process on C [¡] with zero mean, covariance +1, and covariance

function [Z(1)Z(2)
0].

PROOF OF LEMMA 2.1. We only prove the claims for ¤
( ). In view of the ()-

measurability of P() and sup2¡jP()j  1 the proof extends to ?
( ) with few modi…ca-

tions. Under 0 the claim follows from trimming negligibility and Lebesgue’s dominated convergence:

[¤
()] ! [()] = 0.

Under the alternative there are two cases: jj  1, or jj = 1 such that [j] may not

exist.

Case 1 (jj  1): Property W1, compactness of ¡ and boundedness of  imply  (0) is

uniformly bounded and revealing: [ (0)] 6= 0 for all  2 ¡ where  has Lebesgue measure

zero. Now invoke boundedness of  (0) with Lebesgue’s dominated convergence theorem and

negligibility of trimming to deduce j[(1 ¡ (
0)) (0)]j ! 0, hence [(

0) (0)] =

 [ (0)] + (1) 6= 0 for all  2 ¡ and all  ¸  for su¢ciently large  .

Case 2 (jj = 1): Under 1 since () ! 1  and jj = 1, by the de…nition of

conditional expectations there exists su¢ciently large  such that min¸ j[(
0)j]j  0 with

positive probability 8 ¸  . The claim therefore follows by Theorem 1 of Bierens and Ploberger

(1997) and Theorem 2.3 of Stinchcombe and White (1998): lim inf!1 j[(
0) (0)]j  0 for

all  2 ¡. QED.

PROOF OF THEOREM 2.2. De…ne ¤
( ) := ¤

( ) ¡ [¤
( )] and ̂¤

( )

:= ̂¤
( ) ¡ [̂¤

( )]. We …rst state some required properties. Under plug–in properties P1

or P2 ̂ ¡ 0 =  (1). Identi…cation I1 imposes under 0

sup
2¡

¯
¯¡1 ()[¤

 ()]
¯
¯ = (1) (12)

which implies the following long-run variance relation uniformly on ¡:



Ã
X

=1

¤
()

!2

= 2() ¡ 2
¡


£
¤

( )
¤¢2

= 2() (1 +  (1))  (13)

Uniform expansion Lemma B.3, coupled with Jacobian consistency Lemma B.4 and ̂

! 0 imply
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for any arbitrarily large …nite   0,

sup
2¡

¯
¯
¯
¯
¯

1



X

=1

n
̂¤

(̂ ) ¡ ̂¤
()

o
¡  ()0

³
̂ ¡ 0

´
(1 +  (1))

¯
¯
¯
¯
¯
= 

³
¡

´
 (14)

Finally, by uniform approximation Lemma B.2.a

sup
2¡

¯
¯
¯
¯
¯

1

()

X

=1

©
̂¤

() ¡¤
 ()

ª
¯
¯
¯
¯
¯
=  (1)  (15)

and by Lemma B.5 we have uniform HAC consistency:

sup
2¡

¯
¯
¯̂2(̂ )2() ¡ 1

¯
¯
¯ = (1) (16)

Claim i (̂ () : Null 0): Under fast plug-in case P1 we assume sup2¡ jj() ~ ¡1 jj ! 0,

hence

sup
2¡

¯
¯
¯¡1 () ()0

³
̂ ¡ 0

´¯
¯
¯ = (1) (17)

Since   0 in (14) may be arbitrarily large, lim inf!1 inf2¡ ()  0 by non-degeneracy F2, and

equations (12)-(17) are uniform properties, it follows uniformly on ¡

T̂ ()

»

Ã
1

()

X

=1

¤
() +

 ()0

()

³
̂ ¡ 0

´
+ 

µ


()
¡

¶!2

(18)

=

Ã
1

()

X

=1

¤
() +  (1)

!2

= M2
 () 

say. Now apply variance relation (13), UCLT Lemma B.7 and the mapping theorem to conclude

[M2
 ()] ! 1 and fT̂ () :  2 ¡g =) f2() :  2 ¡g, where () is (0 1)-Gaussian process on

C[¡] with covariance function [(1)(2)].

Under slow plug-in case P2 a similar argument applies in lieu of plug-in linearity and UCLT

Lemma B.7. Since the steps follow conventional arguments we relegate the proof to Hill (2011c:

Section C.2).

Claim ii (̂ () : Alternative 1): Lemma 2.1 ensures inf¸
¯
¯[¤

()]
¯
¯  0 for some  2

N and all  2 ¡ where  ½ ¡ has Lebesgue measure zero. Choose any  2 ¡, assume  ¸ 
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and write

T̂ () =

Ã
1

̂(̂ )

X

=1

̂¤
(̂ )

!2

=
2

¡


£
¤

()
¤¢2

̂2(̂ )

0

@

¯
¯
¯1

P
=1 ̂

¤
(̂ )

¯
¯
¯

¯
¯

£
¤

()
¤¯
¯

1

A

2



In lieu of (16) and the Lemma B.1.a,b variance property j[¤
()]j() ! 1, the proof is

complete if we show M(̂ ) := j1
P

=1 ̂
¤
(̂ )jj[¤

()]j

! 1.

By (14), (15) and the triangle inequality M(̂ ) is bounded by

1
¯
¯

£
¤

()
¤¯
¯

¯
¯
¯
¯
¯

1



X

=1

¤
()

¯
¯
¯
¯
¯
+

1
¯
¯

£
¤

()
¤¯
¯

¯
¯
¯ ()0

³
̂ ¡ 0

´
(1 +  (1))

¯
¯
¯+

Ã
 ()


¯
¯

£
¤

()
¤¯
¯

!



where sup2¡f1
P

=1
¤
()[¤

()]g

! 1 by Lemma B.6. Further, combine fast or slow

plug-in P1 or P2, the construction of  () and variance relation Lemma B.1.a,b to obtain

¯
¯
¯ ()0

³
̂ ¡ 0

´
(1 +  (1))

¯
¯
¯

¯
¯

£
¤

()
¤¯
¯ ·

 ()


¯
¯

£
¤

()
¤¯
¯ ()0 ¡1 () ¡12 () » 

 ()


¯
¯

£
¤

()
¤¯
¯ =  (1) 

Therefore M(̂ )

! 1.

Claim iii (̂?
 ()): The argument simply mimics claims () and () since under plug-in case P3

it follows ̂? (̂ )¡1
P

=1 ̂
?
(̂ )


» ? ()¡1

P
=1

?
() by construction of the orthogonal

equations (Wooldridge 1990), and straightforward generalizations of the supporting lemmas. QED.

The remaining proofs exploit the fact that for each  2 f g the product  (0) has the

same tail decay rate as : by weight boundedness W1.b  (j sup2R  ()j  ) ¸  (j () j 

) ¸  (j inf2R  ()j  ). Further, use  = , dominated convergence and each 


! 1 to deduce [j (0)j

] = [j (0)j
] £ (1 + (1)) for any   0. Hence higher

moments of  (0) and  are equivalent up to a constant scale.

PROOF OF THEOREM 3.1. The claim under 1 follows from Theorem 2.2. We prove ()


! (1 ¡ )¡1

R 1
 (()  ) under 0 for plug-in case P1 since the remaining cases follow similarly.

Drop  and write ̂¤
(̂ ) and ̂2(̂ ) to express dependence on  2 ¤ := [ 1]. De…ne ̂()

:= ̂¡1 (̂ )
P

=1 ̂
¤
(̂ ). We exploit weak convergence on a Polish space11: we write f̂()

:  2 ¤g =)¤ f() :  2 ¤g on 1(¤), where f() :  2 ¤g is a Gaussian process with a version

11See Ho¤mann-Jørgensen (1991), cf. Dudley (1978).
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that has uniformly bounded and uniformly continuous sample paths with respect to jj ¢ jj2, if ̂()

converges in f.d.d. and tightness applies: lim!0 lim sup!1  (supjj¡~jj· j̂() ¡ ̂(~)j  ) =

0 8  0.

We need only prove f̂() :  2 ¤g =)¤ f() :  2 ¤g since the claim follows from multiple appli-

cations of the mapping theorem. Convergence in f.d.d. follows from sup2¤ j̂¡1 (̂ )
P

=1 ̂
¤
(̂ )

¡ ¡1 ()
P

=1
¤
()j


! 0 by (14)-(16) under plug-in case P1, and the proof of UCLT Lemma B.7.

Consider tightness and notice by (14)-(17) and plug-in case P1

sup
2¤

¯
¯
¯̂() ¡ Z ()

¯
¯
¯


! 0 where Z () :=

X

=1

1

()
 () =

X

=1

Z () 

hence we need only consider Z () for tightness. By Lemma B.1.b and inff¤g  0 it is easy to verify

inf2¤ 
2
() = 2 for some sequence f2g that satis…es lim inf!1 2  0. Therefore

¯
¯
¯
¯
¯

X

=1

n
Z () ¡ Z(~)

o
¯
¯
¯
¯
¯
·

¯
¯
¯
¯
¯

1

12

X

=1



n
 () ¡ (~)

o
¯
¯
¯
¯
¯

+

¯
¯
¯
¯
()

(~)
¡ 1

¯
¯
¯
¯ £

¯
¯
¯
¯
¯

1

()

X

=1

()

¯
¯
¯
¯
¯
= A1( ~) + A2( ~)

By subadditivity it su¢ces to prove each lim!0 lim sup!1  (supjj¡~jj· A( ~)  ) = 0 8 

0.

Consider A1( ~) and note () can be approximated by a sequence of continuous, di¤eren-

tiable functions (Lighthill 1958, Phillips 1995). Let fNg be a sequence of positive numbers to be

chosen below, and de…ne a smoothed version of (),

IN() :=

Z 1

0
()S (N ( ¡ ))

N

2N 2

 =

Z +1N

¡1N

()

(
¡1(1¡N

2
(¡)

2)

R 1
¡1 

¡1(1¡2)

)

£
N

2N2



where S() is a so-called "smudge" function used to blot out () when  is outside the interval

( ¡ 1N  + 1N). The term f¢g after the second equality de…nes S() on [¡1 1]. The random

variable IN() is =-measurable, uniformly bounded, continuous and di¤erentiable for each N,

and since () ¸ (~) for  ¸ ~ then IN() · IN(
~)  Cf. Phillips (1995).
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Observe A1( ~) = B1N(

~) + B2N() + B2N(
~) where

B1N(
~) =

X

=1



n
IN () ¡ IN(

~)
o

12
, B2N() =

X

=1

 f () ¡ IN()g

12


Consider B1N(
~), de…ne DN() := ()IN(), and let f( )g for in…nitessimal 

 0 be any sequence of positive numbers that satis…es  (jj  ( )) !  ¡  2 (0 1), hence

lim!1 sup2¤ ( )  1. By the mean-value-theorem IN()¡IN(
~) = DN(¤)(¡~)

for some ¤ 2 ¤, j ¡ ¤j · j ¡ ~j. But since sup2¤ j() ¡ 1j

! 0 it must be the case that

sup2¤ jDN()j ! 0  as  ! 1 for any N ! 1. Therefore, for  su¢ciently large, all  ¸

 , any   0 and some f( )g we have sup2¤jDN()j ·  sup2¤j(jj · ( )

)j ·  sup2¤ 

( ) which is bounded on N. This implies DN() is -bounded for any  

2 uniformly on ¤ £ N, and geometrically -mixing under R4. In view of lim inf!1 2  0 we may

therefore apply Lemma 3 in Doukhan et al (1995) to obtain sup2¤ j¡12¡1
P

=1DN()j =

(1). This su¢ces to deduce lim!0 lim sup!1  (supjj¡~jj· jB1N(
~)j  ) is bounded by

lim
!0

lim sup
!1



Ã

 sup
2¤

¯
¯
¯
¯
¯

1

12

X

=1

DN()

¯
¯
¯
¯
¯
£   

!

= 0

Further, since the rate N ! 1 is arbitrary, we can always let N ! 1 so fast that

lim sup!1  (sup2¤ jB2N()j  ) = 0, cf. Phillips (1995). By subadditivity this proves

lim!0 lim sup!1  (supjj¡~jj· A1( ~)  ) = 0 8  0.

Now consider A2( ~). By UCLT Lemma B.7 sup2¤ j¡1 ()
P

=1()j = (1) for

any compact subset ¤ of (0 1]. The proof is therefore complete if we show j()(~) ¡ 1j

· j ¡ ~j12. By Lemma B.1.b 2() = L()[2
 ()]. Compactness of ¤ ½ (0 1] en-

sures lim inf!1 inf2¤ L()  0 and sup2¤ L() = (ln()), and by distribution continuity

[2
 ()] is di¤erentiable, hence j()(~) ¡ 1j · (sup2¤fj()jg[2

 ()])12 £ j

¡ ~j12 =: Ej ¡ ~j12 where () := ()[2
 ()]. Since  »  ln() it is easy to verify

lim sup!1 sup2¤ E  1: if [2
 ]  1 then the bound is trivial, and if [2

 ] = 1 then use 

= ()
1 = (ln())1¡1 and Karamata’s Theorem (Resnick 1987: theorem 0.6). QED.

PROOF OF LEMMA 4.1. By Lemma B.7 in Hill (2011b) () = ¡[()] £ (1 +

(1)) hence it su¢ces to bound ([ () ])
22(). The claim follows from Lemma B.1.b, and
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the following implication of Karamata’s theorem (e.g. Resnick 1987: Theorem .06): if any random

variable  has tail  (jj  ) = ¡(1 + (1)), and ¤ := (jj · ),  (jj  ) =

 = (1) and  ! 1, then j¤j
 is slowly varying if  = , and j¤j

 » ()

= ()
¡1 if   . QED.

PROOF OF LEMMA 4.2. First some preliminaries. Integrability of  is assured by   1,

and  has tail (11) with the same tail index  (Brockwell and Cline 1985). Stationarity ensures ()

=
P1

=0 ()¡, where sup2B j()j ·  for  2 (0 1), 0(
0) = 1 and (

0) = 0 8 ¸ 1.

Since  is iid with tail (11) it is easy to show () satis…es uniform power law property R3.b by

exploiting convolution tail properties developed in Embrechts and Goldie (1980). Use (4) and (11) to

deduce  =  ()
1.

F2 follows from the stationary AR data generating process and distribution continuity. I1 holds

since [¤
()] = 0 by independence, symmetry and symmetric trimming. R1 and R2 hold by

construction; (11) and the stated error properties ensure R3; see Pham and Tran (1985) for R4.

Now P1-P3. OLS and LAD are 1-convergent if  2 (1 2] (Davis et al 1992); LTTS and

GMTTM are 1()-convergent if  2 (1 2] (Hill and Renault 2010, Hill 2011b);12 and LWAD

is 12-convergent in all cases (Ling 2005). It remains to characterize (). Each claim follows by

application of Lemma 4.1. If   2 then () » , so OLS, LTTS and GMTTM satisfy P2 (LAD

and LWAD are not linear: see Davis et al 1992). If  2 (1 2) then () »  ()2¡1 = (),

while each ̂ satis…es ~
12


12 ! 1, hence P1 applies for any intermediate order fg. The case

 = 2 is similar.

Finally, Lemma 4.1 can be shown to apply to  ? () by exploiting the fact that  = ¡

have the same tail index as  (Embrechts and Goldie 1980). The above arguments therefore extend

to ?
( ) under P3. QED.

PROOF OF LEMMA 4.3. The ARCH process fg is stationary geometrically -mixing (Car-

rasco and Chen 2002). In lieu of re-centering after trimming and error independence, all conditions

except P1-P3 hold by the arguments used to prove Lemma 4.2.

Consider P1-P3. Note  = 2 ¡ 1 is iid, it has tail index 2 2 (1 2] if [4 ] = 1, and

()()j0 = ¡2
2
 is integrable. Further 2() = [¤2

()] by independence and re-

12LTTS and GMTTM require trimming fractiles for estimation: GMTTM requires fractiles ~ for each estimating
equation ~, and LTTS requires fractiles ~ and ~ for  and ¡. The given rates of convergence apply if for
GMTTM ~ »  ln() (Hill and Renault 2010), and for LTTS ~ »  ln() and ~ »  ln() (Hill 2011b), where
  0 is chosen by the analyst and may be di¤erent in di¤erent places.
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centering. Thus () »  if [4 ]  1, and otherwise apply Lemma 4.1 to deduce () »

 ()4¡1 if   4 and () » () if  = 4.

GMTTM with QML-type equations and QMTTL have a scale jj~jj » () if [4 ] = 1, hence

P1, otherwise jj~jj »  hence P2 (Hill and Renault 2010, Hill 2011b). Log-LAD is 12-convergent

if [2 ]  1, hence P1 if  · 4, and if   4 then it does not satisfy P2 since it is not linear.

QML is 12-convergent if [4 ]  1 hence P2, and if [4 ] = 1 then the rate is 1¡2() when

 2 (2 4] (Hall and Yao 2003: Theorem 2.1). But if   4 then ()4¡1 = 
4¡1
 2¡4

 2¡4() for any slowly varying () ! 1 and intermediate order fg hence QML does

not satisfy P1 or P2. Synonymous arguments extend to ?
() under P3 by exploiting Lemma 4.1.

QED.
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Table 1 - Empirical Size (Linear AR)

iid  ( = 15) GARCH  ( = 2) iid  ( = 1)

 200 800 200 800 200 800

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

TT-Orth-Fix .00, .01, .04 .00, .02, .06 .00, .01, .05 .00, .03, .09 .00, .02, .05 .00, .03, .07

TT-Fix .00, .02, .07 .01, .04, .08 .00, .01, .04 .00, .02, .05 .00, .02, .06 .00, .02, .04

TT-Orth-OT .01, .04, .06 .02, .06, .12 .01, .03, .04 .01, .02, .04 .01, .03, .09 .02, .07, .12

TT-OT .23, .41, .52 .31, .46, .54 .04, .17, .27 .15, .31, .40 .04, .12, .20 .06, .14, .23

CM-Orth .00, .01, .05 .00, .03, .07 .00, .04, .11 .00, .04, .10 .00, .04, .09 .00, .03, .09

CM .00, .01, .04 .01, .02, .08 .00, .00, .02 .00, .01, .03 .00, .01, .03 .00, .02, .04

HW .17, .22, .25 .21, .24, .27 .06, .15, .24 .80, .87, .89 .00, .02, .05 .02, .05, .07

RESET .00, .00, .02 .00, .01, .02 .00, .03, .09 .01, .05, .11 .00, .03, .08 .01, .05, .10

McLeod-Li .02, .03, .03 .01, .02, .02 .58, .70, .78 1.0, 1.0, 1.0 .01, .04, .07 .02, .05, .09

Tsay .98, .99, 1.0 1.0, 1.0, 1.0 .37, .47, .51 .72, .77, .80 .01, .05, .10 .01, .05, .10

a. Moment supremum of the test error :  = supf : jj
  1g

b. TT = Tail-Trimmed CM test with randomized nuisance parameter . Fix = …xed trimming parameter .
c. Orth = orthogonal equation transformation. OT = occupation time test over set of .

d. Rejection frequencies at 1%, 5% and 10% nominal levels.

e. Untrimmed randomized and sup-CM tests.

f. Hong and White’s (1996) nonparametric test.

g. Ramsey’s RESET test with 3 lags; McLeod and Li’s test with 3 lags; Tsay’s F-test.
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Table 2 - Empirical Power (Self-Exciting Threshold AR)

iid  ( = 15) GARCH  ( = 2) iid  ( = 1)

 200 800 200 800 200 800

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

TT-Orth-Fix .02, .12, .22 .08, .26, .38 .01, .06, .11 .01, .05, .11 .02, .05, .11 .02, .08, .15

TT-Fix .12, .18, .24 .21, .32, .39 .01, .05, .11 .03, .12, .23 .02, .07, .12 .09, .27, .43

TT-Orth-OT .19, .35, .46 .65, .83, .93 .08, .17, .25 .12, .24, .39 .06, .13, .24 .16, .28, .42

TT-OT .28, .30, .32 .38, .35, .37 .11, .13, .21 .24, .25, .39 .04, .13, .22 .39, .52, .57

CM-Orth .05, .21, .33 .11, .27, .42 .02, .07, .13 .01, .05, .09 .01, .04, .08 .02, .06, .10

CM .04, .11, .18 .12, .23, .29 .01, .05, .10 .02, .12, .24 .01, .07, .14 .08, .30, .44

HW .06, .10, .16 .17, .15, .30 .04, .05, .09 .04, .07, .12 .02, .06, .11 .16, .29, .40

RESET .03, .14, .28 .08, .28, .45 .02, .12, .24 .15, .38, .53 .20, .54, .73 1.0, 1.0, 1.0

McLeod-Li .29, .45, .55 .71, .76, .83 .00, .00, .07 .01, .05, .10 .07, .19, .27 .51, .69, .79

Tsay .02, .02, .02 .00, .00, .00 .13, .17, .19 .15, .17, .21 .45, .65, .70 1.0, 1.0, 1.0

a. The rejection frequencies are adjusted for size distortions based on Table 1.

Table 3 - Empirical Power (Bilinear AR)

iid  ( = 15) GARCH  ( = 2) iid  ( = 1)

 200 800 200 800 200 800

1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10% 1%, 5%, 10%

TT-Orth-Fix .04, .16, .26 .22, .39, .49 .01, .07, .11 .02, .08, .14 .01, .05, .09 .01, .05, .11

TT-Fix .04, .13, .21 .13, .31, .42 .02, .09, .17 .02, .09, .18 .01, .04, .07 .01, .04, .10

TT-Orth-OT .08, .14, .18 .36, .38, .37 .02, .05, .10 .04, .06, .09 .01, .05, .05 .00, .01, .02

TT-OT .57, .61, .61 .68, .58, .60 .27, .30, .36 .57, .52, .55 .01, .07, .13 .06, .12, .16

CM-Orth .03, .14, .24 .21, .40, .51 .02, .11, .21 .03, .13, .26 .01, .04, .11 .01, .05, .11

CM .02, .08, .16 .08, .30, .41 .01, .05, .10 .01, .05, .11 .01, .04, .09 .01, .04, .09

HW .00, .00, .00 .00, .00, .00 .02, .07, .07 .00, .00, .00 .24, .38, .47 .87, .92, .97

RESET .02, .07, .14 .01, .06, .14 .03, .07, .11 .01, .05, .09 .02, .06, .12 .03, .17, .28

McLeod-Li .19, .26, .33 .35, .43, .51 .00, .02, .04 .00, .00, .00 .86, .93, .98 .99, 1.0, 1.0

Tsay .03, .06, .10 .01, .05, .10 .36, .36, .37 .20, .20, .23 .76, .84, .88 .91, .95, .96

a. The rejection frequencies are adjusted for size distortions based on Table 1.
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Figure 1: P-Value Functions p(¸) and p?
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